Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:P=x3+y3+2xy=(x+y)3−3xy(x+y)+2xy=2013−601xyP=x3+y3+2xy=(x+y)3−3xy(x+y)+2xy=2013−601xy
Đặt S=xy=x(201−x)S=xy=x(201−x)
Dễ có:1≤x≤2001≤x≤200
S=200−(x−1)(x−200)≥0⇒Smin=200S=200−(x−1)(x−200)≥0⇒Smin=200
Không mất tính TQ giả sử x≤y⇒x≤100x≤y⇒x≤100
S=100.101−(x−100)(x−101)≤100.101⇒Smax=100.101
đặt \(\hept{\begin{cases}a+b=x\\b+c=y\\c+a=z\end{cases}}\)
cậu tính A theo x,y,x rồi chứng minh
\(B=\frac{x}{z-y}.\frac{y}{x-z}+\frac{y}{x-z}.\frac{z}{y-x}+\frac{z}{y-x}.\frac{x}{z-y}=-1\)
thì ta có A+2B>=0 -->A>=-2B=2
\(\frac{\left(a+b\right)^2}{a-b}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a\right)^2}{\left(c-a\right)}\ge2\)
Subtract 2 from both sides:
\(\frac{\left(a+b\right)^2}{a-b}+\frac{\left(b+c\right)^2}{b-c}+\frac{\left(c+a\right)^2}{c-a}-2\ge2-2\)
Refine:
\(\frac{\left(a+b\right)^2}{a-b}+\frac{\left(b+c\right)^2}{b-c}+\frac{\left(c+a\right)^2}{c-a}\ge0\)
Simplyfy : \(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{b-c}+\frac{\left(c+a\right)^2}{c-a}:\) \(\frac{4a^2bc-4a^2c^2-4a^2b^2+2a^2b-2a^2c+4ab^2c+4abc^2+2ac^2-2ab^2-4b^2c^2+2b^2c-2bc^2}{\left(a-b\right)\left(b-c\right)\left(c-a\right)}\)
\(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a\right)^2}{\left(c-a\right)}-2\)
Convert element to fraction: \(2=\frac{2}{1}\)
\(=\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a^2\right)}{\left(c-a\right)}-\frac{2}{1}\)
Find LCD for: \(\frac{\left(a+b\right)^2}{\left(a-b\right)}+\frac{\left(b+c\right)^2}{\left(b-c\right)}+\frac{\left(c+a\right)^2}{c-a}-\frac{2}{1}\):
Find the least common denominator 1 (a - b) (b - c) (c- a) = (a - b) (b - c) (c- a)(a - b) (b - c) (c- a)
Sau đó vào đây để xem bài giải tiếp theo nhá! Lười đánh máy tiếp lắm! Có gì mai mốt sử dụng phần mềm đó giải khỏi phải lên đây hỏi.
Step-by-Step Calculator - Symbolab
Câu hỏi của Hoàng Minh Nguyễn - Toán lớp 9 - Học toán với OnlineMath
Đặt \(x=\frac{a}{b-c};y=\frac{b}{c-a};z=\frac{c}{a-b}\)
\(\Rightarrow xy+yz+zx=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ca}{\left(a-b\right)\left(b-c\right)}=-1\) (Tự CM)
Ta có: \(VT=x^2+y^2+z^2=\left(x+y+z\right)^2-2\left(xy+yz+zx\right)\ge2\)
=> ĐPCM
C/m bằng biến đổi tương đương như sau
\(Σ\frac{a^2}{\left(b-c\right)^2}-2=\left(Σ\frac{a}{b-c}\right)^2-2Σ\frac{ab}{\left(b-c\right)\left(c-a\right)}-2\)
\(=\frac{\left(Σ\left(a^3-a^2b-a^2c+abc\right)\right)^2}{╥\left(a-b\right)^2}-2\frac{Σ\left(a^2b-a^2c\right)}{╥\left(a-b\right)}-2\)
\(=\frac{\left(Σ\left(a^3-a^2b-a^2c+abc\right)\right)^2}{╥\left(a-b\right)^2}+2-2\ge0\)
P/s: \(╥\) dùng thay cho ∏ nhé, tại olm đã ít kí hiệu lại ko cho paste nên dùng tạm
Đặt \(x=\frac{2a}{b+c};y=\frac{2b}{c+a};z=\frac{2c}{a+b}\)thì ta có \(xy+yz+zx+xyz=4\)
Bất đẳng thức cần chứng minh trở thành: \(x^2+y^2+z^2+5xyz\ge4\)
Đặt \(x+y+z=p;xy+yz+zx=q;xyz=r\)thì \(q+r=4\)và ta cần chứng minh \(p^2-2q+5r\ge8\)
\(\Leftrightarrow p^2-2q+5\left(r-4\right)+12\ge0\Leftrightarrow p^2-7q+12\ge0\)
*) Nếu \(4\ge p\)thì theo Schur, ta có: \(r\ge\frac{p\left(4q-p^2\right)}{9}\Leftrightarrow4\ge q+\frac{p\left(4q-p^2\right)}{9}\)
\(\Leftrightarrow q\le\frac{p^3+36}{4p+9}\)
Nên ta cần chỉ ra rằng \(p^2-\frac{7\left(p^3+6\right)}{4p+9}+12\ge0\Leftrightarrow\left(p-3\right)\left(p^2-6\right)\le0\)*đúng vì \(4\ge p\ge\sqrt{3q}\ge3\)*
*) Nếu \(p\ge4\)thì \(p^2\ge16\ge4q\Rightarrow p^2-2q+5r\ge p^2-2q\ge\frac{p^2}{2}\ge8\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = 1 hoặc \(\left(x,y,z\right)=\left(2,2,0\right)\)và các hoán vị
Tuyệt quá,
Bất đẳng thức \(\frac{a^2}{\left(b+c\right)^2}+\frac{b^2}{\left(c+a\right)^2}+\frac{c^2}{\left(a+b\right)^2}+\frac{kabc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}+\frac{1}{8}k\)
có hằng số k tốt nhất là 10.
Tức là bài toán này đúng với mọi \(k\le10\)!
Đặt \(x=\frac{a+b}{a-b};y=\frac{b+c}{b-c};z=\frac{c+a}{c-a}\)
Ta có : \(x+1=\frac{2a}{a-b};y+1=\frac{2b}{b-c};z+1=\frac{2c}{c-a}\) (1)
\(x-1=\frac{2b}{a-b};y-1=\frac{2c}{b-c};z-1=\frac{2a}{c-a}\) (2)
Từ (1) và (2) => \(\left(x+1\right)\left(y+1\right)\left(z+1\right)=\left(x-1\right)\left(y-1\right)\left(z-1\right)\)
<=> \(\left(xy+x+y+1\right)\left(z+1\right)=\left(xy-x-y+1\right)\left(z-1\right)\)
<=> \(xyz+xz+yz+z+xy+x+y+1=xyz-xz-yz+z-xy+x+y-1\)
<=> \(xy+yz+xz=-1\)
TA có \(\left(x+y+z\right)^2\ge0\Leftrightarrow x^2+y^2+z^2\ge-2\left(xy+yz+xz\right)=2\)
Đặt \(A=\frac{ab}{\left(b-c\right)\left(c-a\right)}+\frac{bc}{\left(c-a\right)\left(a-b\right)}+\frac{ca}{\left(b-c\right)\left(a-b\right)}=-1\)
\(\left(\frac{a}{b-c}+\frac{b}{c-a}+\frac{c}{a-b}\right)^2\ge0\)
\(\Leftrightarrow\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2+2A\ge0\)
\(\Leftrightarrow\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2\ge2\)
\(\ge2\)