Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo bài ra:
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b};a\ne b\ne c;a,b,c\ne0\)
\(P=\dfrac{b+c}{a}+\dfrac{a+c}{b}+\dfrac{a+b}{c}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b+c}=\dfrac{b}{a+c}=\dfrac{c}{a+b}=\dfrac{a+b+c}{b+c+a+c+a+b}=\dfrac{a+b+c}{2a+2b+2c}=\dfrac{a+b+c}{2\left(a+b+c\right)}=\dfrac{1}{2}\)
\(hay:\dfrac{a}{b+c}=\dfrac{1}{2}\Rightarrow a=\dfrac{b+c}{2}\)
Thay \(a=\dfrac{b+c}{2}\) vào \(P\), ta có:
\(P=\dfrac{b+c}{\dfrac{b+c}{2}}+\dfrac{b+c+c}{b}+\dfrac{b+c+b}{c}\\ P=\dfrac{2\left(b+c\right)}{b+c}+\dfrac{2c+b}{b}+\dfrac{2b+c}{c}\\ P=2+\dfrac{2c}{b}+\dfrac{b}{b}+\dfrac{2b}{c}+\dfrac{c}{c}\\ P=2+\dfrac{2c}{b}+1+\dfrac{2b}{c}+1\\ P=\left(2+1+1\right)+\dfrac{2c}{b}+\dfrac{2b}{c}\\ P=4+\dfrac{2c}{b}+\dfrac{2b}{c}\\ P=4+\dfrac{2c+2b}{b+c}\\ P=4+\dfrac{2\left(b+c\right)}{b+c}\\ P=4+2\\ P=6\)
Vậy: \(P=6\)
Áp dụng dãy tỉ số bằng nhau ta có:
\(\frac{a}{2b+c}=\frac{b}{2c+a}=\frac{c}{2a+b} =\frac{a+b+c}{3(a+b+c)}=\frac{1}{3} \)
=>a=3(2b+c)
=>b=3(2c+a)
=>c=3(2a+b)
=> A=\(\frac{2b+c}{a}+\frac{2c+a}{b}+\frac{2a+b}{c}=\frac{2b+c}{3(2b+c)} +\frac{2c+a}{3(2c+a)}+\frac{2a+b}{3(2a+b)} \)=\(\frac{1}{3}+\frac{1}3{}+\frac{1}3{} \)=1
Bài 1:
\(3^{-1}.3^n+4.3^n=13.3^5\)
\(\Rightarrow3^{n-1}+4.3.3^{n-1}=13.3^5\)
\(\Rightarrow3^{n-1}\left(1+4.3\right)=13.3^5\)
\(\Rightarrow3^{n-1}.13=13.3^5\)
\(\Rightarrow3^{n-1}=3^5\)
\(\Rightarrow n-1=5\)
\(\Rightarrow n=6\)
Vậy n = 6
Bài 2a: Câu hỏi của Nguyễn Trọng Phúc - Toán lớp 7 | Học trực tuyến
Vì \(a;b;c>0\) nên \(a+b+c>0\)
Áp dụng tính chất dãy tỉ số bằng nhau:
\(\dfrac{2b+c-a}{a}=\dfrac{2c+a-b}{b}=\dfrac{2a+b-c}{c}=\dfrac{2b+c-a+2c+a-b+2a+b-c}{a+b+c}=2\)
\(\Rightarrow\left\{{}\begin{matrix}2b+c=3a\Leftrightarrow3a-2b=c\\2c+a=3b\Leftrightarrow3b-2c=a\\2a+b=3c\Leftrightarrow3c-2a=b\end{matrix}\right.\)
Khi đó: \(\dfrac{\left(3a-2b\right)\left(3b-2c\right)\left(3c-2a\right)}{abc}=\dfrac{abc}{abc}=1\)
Nguyễn Huy TúHoàng Thị Ngọc AnhAkai Harumangonhuminhhelp me!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{a}{a+2b}=\frac{b}{b+2c}=\frac{c}{c+2a}=\frac{a+b+c}{a+2b+2+2c+1+2a}\\ =\frac{a+b+c}{\left(a+2a\right)+\left(b+2b\right)+\left(c+2c\right)}\\ =\frac{a+b+c}{3a+3b+3c}\\ =\frac{a+b+c}{3\left(a+b+c\right)}\)
Ta có:
\(a+b+c⋮a+b+c\\ \Rightarrow a+b+c⋮3\)
Vậy \(a+b+c⋮3\)