K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 3 2018

từ giả thiết ab+bc+ca = 3abc\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

ta có \(\frac{1}{a+2b+3c}=\frac{1}{a+c+b+c+b+c}\le\frac{1}{36}\left(\frac{1}{a}+\frac{2}{b}+\frac{3}{c}\right)\)

tương tự ta cũng có\(\hept{\begin{cases}\frac{1}{2a+3b+c}\le\frac{1}{36}\left(\frac{2}{a}+\frac{3}{b}+\frac{1}{c}\right)\\\frac{1}{3a+b+2c}\le\frac{1}{36}\left(\frac{3}{a}+\frac{1}{b}+\frac{2}{c}\right)\end{cases}}\)

cộng theo vế \(\Rightarrow VT\le\frac{1}{6}\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)=\frac{1}{2}\)

\("="\)khi a=b=c=....

hic :( tự đăng rồi tự giải ra luôn :(((  sorry mn

4 tháng 3 2019

Áp dụng BĐT Svarxơ:

\(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}\)\(=\dfrac{1}{a}+\dfrac{4}{2b}+\dfrac{9}{3c}\ge\dfrac{\left(1+2+3\right)^2}{a+2b+3c}\)\(=\dfrac{36}{a+2b+3c}\)

CMTT: \(\dfrac{2}{a}+\dfrac{3}{b}+\dfrac{1}{c}\ge\dfrac{36}{2a+3b+c}\)

\(\dfrac{3}{a}+\dfrac{1}{b}+\dfrac{2}{c}\ge\dfrac{36}{3a+b+2c}\)

Cộng vế theo vế, ta có: \(6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge36\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=36F\)

Có: \(ab+bc+ca=3abc\)

Vì a,b,c>0 nên chia cả 2 vế cho abc:

\(\dfrac{1}{c}+\dfrac{1}{a}+\dfrac{1}{b}=3\)

\(\Rightarrow36F\le18\Leftrightarrow F\le\dfrac{1}{2}\)

Vậy Fmin\(=\dfrac{1}{2}\Leftrightarrow a=b=c=1\)

4 tháng 3 2019

Có trong câu hỏi tt nha

9 tháng 3 2016

GTLN = \(\frac{\sqrt{3}}{2}\)

AH
Akai Haruma
Giáo viên
9 tháng 4 2018

Lời giải:

Từ \(ab+bc+ac=3abc\Rightarrow \frac{1}{c}+\frac{1}{a}+\frac{1}{b}=3\)

Áp dụng BĐT Bunhiacopxky:

\(\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{c}\right)(a+b+b+c+c+c)\geq (1+1+1+1+1+1)^2\)

\(\Leftrightarrow \frac{1}{a}+\frac{2}{b}+\frac{3}{c}\geq \frac{36}{a+2b+3c}\)

Hoàn toàn tương tự:

\(\frac{1}{b}+\frac{2}{c}+\frac{3}{a}\geq \frac{36}{b+2c+3a}\)

\(\frac{1}{c}+\frac{2}{a}+\frac{3}{b}\geq \frac{36}{c+2a+3b}\)

Cộng các BĐT vừa thu được ở trên theo vế và rút gọn:

\(\frac{6}{a}+\frac{6}{b}+\frac{6}{c}\geq \frac{36}{a+2b+3c}+\frac{36}{b+2c+3a}+\frac{36}{c+2a+3b}\)

\(\Leftrightarrow 6\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\geq 36F\)

\(\Leftrightarrow 18\geq 36F\Leftrightarrow F\leq \frac{1}{2}\)

Vậy \(F_{\max}=\frac{1}{2}\)

Dấu bằng xảy ra khi \(a=b=c=1\)

Áp dụng bất đẳng thức Cauchy-Schwarz:

\(\dfrac{1}{a}+\dfrac{2}{b}+\dfrac{3}{c}=\dfrac{1}{a}+\dfrac{4}{2b}+\dfrac{9}{3c}\ge\dfrac{\left(1+2+3\right)^2}{a+2b+3c}=\dfrac{36}{a+2b+3c}\)

\(\dfrac{2}{a}+\dfrac{3}{b}+\dfrac{1}{c}=\dfrac{4}{2a}+\dfrac{9}{3b}+\dfrac{1}{c}\ge\dfrac{\left(2+3+1\right)^2}{2a+3b+c}=\dfrac{36}{2a+3b+c}\)

\(\dfrac{3}{a}+\dfrac{1}{b}+\dfrac{2}{c}=\dfrac{9}{3a}+\dfrac{1}{b}+\dfrac{4}{2c}\ge\dfrac{\left(3+1+2\right)^2}{3a+b+2c}=\dfrac{36}{3a+2b+c}\)

Cộng theo vế: \(6\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge36F\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge6F\)

Mặt khác: \(ab+bc+ac=3abc\Leftrightarrow\dfrac{ab+bc+ac}{abc}=3\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}=3\)

\(\Rightarrow18\ge36F\Leftrightarrow F\le\dfrac{1}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=1\)

6 tháng 2 2017

ab+bc+ca=3ac hay ab+bc+ca=3abc

7 tháng 2 2017

Cứ phải cảnh giác bạn à:

không biết hay vô tình hay hưu ý nữa nhưng các câu hỏi sai xuất hiện rất nhiều

khi hỏi lại, không thấy phải hồi. hay là người hỏi cũng chưa hiểu câu hỏi

30 tháng 4 2020

\(a^2b^2c^2+\left(a+1\right)\left(1+b\right)\left(1+c\right)\ge a+b+c+ab+bc+ca+3\)

\(\Leftrightarrow\left(abc\right)^2+abc-2\ge0\Leftrightarrow\left(abc+2\right)\left(abc-1\right)\ge0\Leftrightarrow abc\ge1\)

Áp dụng BĐT Cosi ta có:

\(\frac{a^3}{\left(b+2c\right)\left(2c+3a\right)}+\frac{b+2c}{45}+\frac{2c+3a}{75}\ge3\sqrt[3]{\frac{a^3}{\left(b+2c\right)\left(2c+3b\right)}\cdot\frac{b+2c}{45}\cdot\frac{2c+3a}{75}}=\frac{a}{5}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{b^3}{\left(c+2a\right)\left(2a+3b\right)}+\frac{c+2a}{45}+\frac{2a+3b}{75}\ge\frac{b}{5}\left(2\right)\\\frac{c^3}{\left(a+2b\right)\left(2b+3c\right)}+\frac{a+2b}{45}+\frac{2b+3c}{75}\ge\frac{c}{5}\left(3\right)\end{cases}}\)

Từ (1)(2)(3) ta có:

\(P+\frac{2\left(a+b+c\right)}{15}\ge\frac{a+b+c}{5}\Leftrightarrow P\ge\frac{1}{15}\left(a+b+c\right)\)

Mà \(a+b+c\ge3\sqrt[3]{abc}\Rightarrow S\ge\frac{1}{5}\)

Dấu "=" xảy ra <=> a=b=c=1

3 tháng 5 2020

CHÚC BAN HỌC GIỎI

13 tháng 7 2020

Sử dụng giả thiết a + b + c = 3, ta được: \(\frac{a^3}{3a-ab-ca+2bc}=\frac{a^3}{\left(a+b+c\right)a-ab-ca+2bc}\)\(=\frac{a^3}{a^2+2bc}\)

Tương tự ta có \(\frac{b^3}{3b-bc-ab+2ca}=\frac{b^3}{b^2+2ca}\)\(\frac{c^3}{3c-ca-bc+2ab}=\frac{c^3}{c^2+2ab}\)

Khi đó thì \(P=\frac{a^3}{a^2+2bc}+\frac{b^3}{b^2+2ca}+\frac{c^3}{c^2+2ab}+3abc\)\(=\left(a+b+c\right)-\frac{2abc}{a^2+2bc}-\frac{2abc}{b^2+2ca}-\frac{2abc}{c^2+2ab}+3abc\)\(=3+abc\left[3-2\left(\frac{1}{a^2+2bc}+\frac{1}{b^2+2ca}+\frac{1}{c^2+2ab}\right)\right]\)\(\le3+abc\left[3-2.\frac{9}{a^2+b^2+c^2+2\left(ab+bc+ca\right)}\right]\)(Theo BĐT Bunyakovsky dạng phân thức)\(=3+abc\left[3-2.\frac{9}{\left(a+b+c\right)^2}\right]\le3+\left(\frac{a+b+c}{3}\right)^3=4\)

Đẳng thức xảy ra khi a = b = c = 1

2 tháng 7 2020

Bìa này muốn làm cân 2 bước nha 

Bước 1 ) CM BĐT \(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge9\)

nó được CM như sau

áp dụng BĐT cô si ta đc 

\(\left(x+y+z\right)\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge3.\sqrt[3]{xyz}.3\sqrt[3]{\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9.\sqrt[3]{xyz.\frac{1}{x}.\frac{1}{y}.\frac{1}{z}}=9\)

dấu = xảy ra khi x=y=z

2 tháng 7 2020

Bước 2 ) Theo CM bước 1 . áp dụng ta đc

\(\frac{ab}{a+3b+2c}=\frac{ab}{\left(a+c\right)+\left(b+c\right)+2b}=\frac{ab}{9}.\frac{9}{\left(a+c\right)+\left(b+c\right)+2b}\le\frac{ab}{9}.\left(\frac{1}{a+c}+\frac{1}{b+c}+\frac{1}{2b}\right)\)

CM tương tự ta đc

\(\frac{bc}{b+3c+2a}\le\frac{bc}{9}.\left(\frac{1}{a+c}+\frac{1}{a+b}+\frac{1}{2c}\right)\)

\(\frac{ca}{c+3a+2b}\le\frac{ca}{9}\left(\frac{1}{b+c}+\frac{1}{a+b}+\frac{1}{2a}\right)\)

cộng zế zới zế ta đc

\(A\le\frac{1}{9}\left(\frac{ab+bc}{a+c}+\frac{ab+ca}{b+c}+\frac{bc+ca}{a+b}+\frac{a}{2}+\frac{b}{2}+\frac{c}{2}\right)\)

\(A\le\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}=\frac{6}{6}=1\)

=> MAx A=1 khi a=b=c=2