Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ chứng bất đẳng thức phụ: \(\frac{1}{x+y}\le\frac{1}{4x}+\frac{1}{4y}\left(x,y>0\right)\)
Với \(x,y>0:\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow\left(x+y\right)^2\ge4xy\)
\(\Leftrightarrow\frac{x+y}{4xy}\ge\frac{1}{x+y}\Leftrightarrow\frac{1}{x+y}\le\frac{1}{4x}+\frac{1}{4y}\)(đpcm)
Dấu "=" xảy ra \(\Leftrightarrow x-y=0\Leftrightarrow x=y\)
+ Thay \(a+b+c=6\)vào P , ta được: \(P=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{c+a}\)
Áp dụng bđt chứng minh trên , ta được:\(\frac{1}{a+b}\le\frac{1}{4a}+\frac{1}{4b}\Rightarrow\frac{ab}{a+b}\le ab\left(\frac{1}{4a}+\frac{1}{4b}\right)=\frac{a}{4}+\frac{b}{4}\)
Tương tự như vậy rồi cộng từng vế các bđt , ta được
\(P\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}=\frac{6}{2}=3\)
Dấu "=" xảy ra\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+b+c=6\end{cases}}\Leftrightarrow a=b=c=2\)
Vậy maxP =3\(\Leftrightarrow a=b=c=2\)
\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+3\ge7\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)
\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le3\)Áp dụng BĐT AM-GM ta có :
\(A=\frac{1}{\sqrt{a^3+b^3+1}}+\frac{1}{\sqrt{b^3c^3+1+1}}+\frac{4\sqrt{3}}{c^6+1+2a^3+8}\)
\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{4\sqrt{3}}{2c^3+2a^3+8}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+4}\)
\(=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+1+1+1+1}\)
\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{6\sqrt{ac}}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{1}{\sqrt{3ac}}\)\(=\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{bc}}\right)\)
\(\le\frac{1}{\sqrt{3}}\sqrt{3\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}=\sqrt{\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}\le\sqrt{3}\) (Bunhiacopxki)
Dấu "=" xảy ra\(\Leftrightarrow a=b=c=1\)
PS : Thánh cx đc phết ha; chế đc bài này tui mới khâm phục :)))
nó ko chém đâu anh nó chép trong toán tuổi thơ đấy,thk này khốn nạn lắm
\(P=\frac{a^2}{b+c}+\frac{b^2}{c+a}+\frac{c^2}{a+b}\ge\frac{\left(a+b+c\right)^2}{2a+2b+2c}\)(cô si)
\(P\ge\frac{6^2}{2.6}=3\)dấu "=" xảy ra khi và chỉ khi \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{1}{2}\)
vậy dấu "=" xảy ra khi \(a=b=c=1\)
\(< =>MIN:P=3\)
Hoàng Như Quỳnh đấy có phải cô si đâu ? Bunya phân thức mà ~~
Áp dụng bất đẳng thức Cauchy-Schwarz dạng Engel ta có : ... ( như bạn Hoàng Như Quỳnh )
Dấu "=" xảy ra <=> a = b = c = 2
mk làm r` đây nhé Câu hỏi của Lê Chí Cường - Toán lớp 9 - Học toán với OnlineMath
\(P=\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)
\(P\le\dfrac{ab}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{bc}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)
\(\Leftrightarrow P\le\dfrac{1}{2}\left(a+b+c\right)=3\)
\(P_{max}=3\) khi \(a=b=c\)
Ta có: \(\frac{2a^3}{a^6+bc}\le\frac{2a^3}{2a^3\sqrt{bc}}=\frac{1}{\sqrt{bc}}\\ \)
CMTT: \(\frac{2b^3}{b^6+ca}\le\frac{1}{\sqrt{ca}}\)
\(\frac{2c^3}{c^6+ab}\le\frac{1}{\sqrt{ab}}\)
\(\Rightarrow\frac{2a^3}{a^6+bc}+\frac{2b^3}{b^6+ca}+\frac{2c^3}{c^6+ab}\le\frac{1}{\sqrt{bc}}+\frac{1}{\sqrt{ca}}+\frac{1}{\sqrt{ab}}\)\(=\) \(\frac{\sqrt{bc}}{bc}+\frac{\sqrt{ac}}{ac}+\frac{\sqrt{ab}}{ab}\)
\(\le\frac{a+c}{2ac}+\frac{b+c}{2bc}+\frac{a+b}{2ab}=\frac{2\left(ab+bc+ca\right)}{2abc}=\frac{ab+bc+ca}{abc}\) \(\le\frac{a^2+b^2+c^2}{abc}=\frac{a}{bc}+\frac{b}{ac}+\frac{c}{ab}\left(đpcm\right)\)
Dấu bằng xảy ra khi : a = b = c =1
\(P=\frac{ab}{6-c}+\frac{bc}{6-a}+\frac{ac}{6-b}\)
\(P=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}\)
Ta có: \(\hept{\begin{cases}ab\le\frac{\left(a+b\right)^2}{4}\\bc\le\frac{\left(b+c\right)^2}{4}\\ac\le\frac{\left(a+c\right)^2}{4}\end{cases}}\)(bđt AM-GM)
\(\Rightarrow P\le\frac{\left(a+b\right)^2}{4\left(a+b\right)}+\frac{\left(b+c\right)^2}{4\left(b+c\right)}+\frac{\left(a+c\right)^2}{4\left(a+c\right)}=\frac{a+b+b+c+a+c}{4}=3\)
\("="\Leftrightarrow a=b=c=2\)