Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Áp dụng BDT AM-GM ta có:
\(a+b+c\ge3\sqrt[3]{abc}\)
\(\Rightarrow\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge3\sqrt[3]{\frac{1}{a}\cdot\frac{1}{b}\cdot\frac{1}{c}}=3\sqrt[3]{\frac{1}{abc}}\)
Nhân theo vế ta có:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3\sqrt[3]{abc}\cdot3\sqrt[3]{\frac{1}{abc}}=9\)
Dấu "=" xảy ra khi \(a=b=c\)
1/a+1/b+1/c >= 9
<=>(1/a+1/b+1/c)(a+b+c) >= 9(a+b+c)=9 (do a+b+c=1)
<=>3+(a/b+b/a)+(b/c+c/b)+(c/a+a/c)
áp dụng bđt côsi cho các số dương a/b,b/a,b/c,c/b,c/a,a/c
a/b+b/a >= 2.căn a/b . b/a =2
Tương tự b/c+c/b >= 2,c/a+a/c >= 2
=>3+(a/b+b/a)+(b/c+c/b)+(c/a+a/c) >= 3+2+2+2=9
=>đpcm
Ta có \(1=a+b+c\ge3\sqrt[3]{abc}\)
\(\Leftrightarrow\frac{1}{3}\ge\sqrt[3]{abc}\)
Theo đề bài ta có
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{ab+bc+ca}{abc}\)
\(\ge\frac{3\sqrt[3]{a^2b^2c^2}}{abc}=\frac{3}{\sqrt[3]{abc}}\ge9\)
áp dụng BĐT cô si dạng \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ta có:
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\)\(\Rightarrow\)\(\frac{1}{\frac{1}{a}+\frac{1}{b}}\le\frac{a+b}{4}\)
tương tự làm tiếp 2 cái còn lại rồi cộng vế theo vế . rút gọn vế phải cho 2 là ra
Sửa lại đề : CM : \(\frac{1}{b^2+c^2}+\frac{1}{a^2+b^2}+\frac{1}{c^2+a^2}\le\frac{a^3+b^3+c^3}{2abc}+3\)
Ta có :
\(\frac{1}{b^2+c^2}=\frac{a^2+b^2+c^2}{b^2+c^2}=\frac{b^2+c^2}{b^2+c^2}+\frac{a^2}{b^2+c^2}=1+\frac{a^2}{b^2+c^2}\)
Mà \(b^2+c^2\ge2bc\) nên \(\frac{1}{b^2+c^2}\le1+\frac{a^2}{2bc}\)(1)
CM tương tự ta cũng có : \(\hept{\begin{cases}\frac{1}{a^2+b^2}\le1+\frac{c^2}{2ab}\left(2\right)\\\frac{1}{c^2+a^2}\le1+\frac{b^2}{c^2+a^2}\left(3\right)\end{cases}}\)
Cộng vế với vế của (1);(2);(3) tại ta được :
\(\frac{1}{b^2+c^2}+\frac{1}{a^2+b^2}+\frac{1}{c^2+a^2}\le\frac{a^2}{2bc}+\frac{c^2}{2ab}+\frac{b^2}{2ac}+3=\frac{a^3+b^3+c^3}{2abc}+3\)
=> đpcm
Theo giả thiết ta có: các bất đẳng thức trên tương đương với bất đẳng thức cần chứng minh
\(\frac{a}{4-c}+\frac{b}{4-a}+\frac{c}{4-b}\le1\)
\(\Rightarrow a\left(4-a\right)\left(4-b\right)+b\left(4-b\right)\left(4-c\right)\)\(+c\left(4-c\right)\left(4-a\right)\le\left(4-a\right)\left(4-b\right)\)\(\left(4-c\right)\)
\(\Rightarrow a^2b+b^2c+c^2a+abc\le4\)
Bất đẳng thức trên mang tính hoán vị giữa các bất đẳng thức nên không mất tính tổng quát ta giả swr c nằm giwuax a và b khi đó ta có:
\(a\left(a-c\right)\left(b-c\right)\le0\)
Thực hiện phép khai triển ta được: \(a^2b+c^2a\le a^2c+abc\)rồi cộng thêm \(\left(b^2c+abc\right)\)vào 2 vế ta được:
\(a^2b+b^2c+c^2a+abc\)\(\le a^2c+b^2c+2abc=c\left(a+b\right)^2\)
Áp dụng Bất Đẳng Thức AM-GM ta có:
\(c\left(a+b\right)^2=\frac{1}{2}2c\left(a+b\right)\left(a+b\right)\)\(\le\frac{\left(2c+a+b+a+b\right)^3}{2.27}=4\)nên Bất Đẳng Thức đã được chứng minh
Vậy \(\frac{a}{a+b+1}+\frac{b}{b+c+1}+\frac{c}{c+a+1}\le1\)( đpcm )
Bài này bạn áp dụng BĐT Cô - si là ra
Áp dụng BĐT AM-GM ta có:
\(\left(a+b+c\right)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)\ge3.\sqrt[3]{abc}.\frac{3}{\sqrt[3]{abc}}=9\)
Dấu " = " xảy ra < = > a=b=c