K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 3 2019

+ chứng bất đẳng thức phụ: \(\frac{1}{x+y}\le\frac{1}{4x}+\frac{1}{4y}\left(x,y>0\right)\) 

  Với \(x,y>0:\left(x-y\right)^2\ge0\Leftrightarrow x^2-2xy+y^2\ge0\Leftrightarrow x^2+2xy+y^2\ge4xy\Leftrightarrow\left(x+y\right)^2\ge4xy\)

\(\Leftrightarrow\frac{x+y}{4xy}\ge\frac{1}{x+y}\Leftrightarrow\frac{1}{x+y}\le\frac{1}{4x}+\frac{1}{4y}\)(đpcm)

 Dấu "=" xảy ra \(\Leftrightarrow x-y=0\Leftrightarrow x=y\)

+ Thay \(a+b+c=6\)vào P , ta được: \(P=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{c+a}\)

 Áp dụng bđt chứng minh trên , ta được:\(\frac{1}{a+b}\le\frac{1}{4a}+\frac{1}{4b}\Rightarrow\frac{ab}{a+b}\le ab\left(\frac{1}{4a}+\frac{1}{4b}\right)=\frac{a}{4}+\frac{b}{4}\)

 Tương tự như vậy rồi cộng từng vế các bđt , ta được 

\(P\le\frac{a}{4}+\frac{b}{4}+\frac{b}{4}+\frac{c}{4}+\frac{c}{4}+\frac{a}{4}=\frac{a+b+c}{2}=\frac{6}{2}=3\)

Dấu "=" xảy ra\(\Leftrightarrow\hept{\begin{cases}a=b=c\\a+b+c=6\end{cases}}\Leftrightarrow a=b=c=2\)

 Vậy maxP =3\(\Leftrightarrow a=b=c=2\)

7 tháng 3 2019

\(P=\frac{ab}{6-c}+\frac{bc}{6-a}+\frac{ac}{6-b}\)

\(P=\frac{ab}{a+b}+\frac{bc}{b+c}+\frac{ac}{a+c}\)

Ta có: \(\hept{\begin{cases}ab\le\frac{\left(a+b\right)^2}{4}\\bc\le\frac{\left(b+c\right)^2}{4}\\ac\le\frac{\left(a+c\right)^2}{4}\end{cases}}\)(bđt AM-GM)

\(\Rightarrow P\le\frac{\left(a+b\right)^2}{4\left(a+b\right)}+\frac{\left(b+c\right)^2}{4\left(b+c\right)}+\frac{\left(a+c\right)^2}{4\left(a+c\right)}=\frac{a+b+b+c+a+c}{4}=3\)

\("="\Leftrightarrow a=b=c=2\)

21 tháng 5 2018

\(7\left(\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}\right)=6\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)+3\ge7\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\right)\)

\(\Rightarrow\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ac}\le3\)Áp dụng BĐT AM-GM ta có : 

\(A=\frac{1}{\sqrt{a^3+b^3+1}}+\frac{1}{\sqrt{b^3c^3+1+1}}+\frac{4\sqrt{3}}{c^6+1+2a^3+8}\)

\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{4\sqrt{3}}{2c^3+2a^3+8}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+4}\)

\(=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{c^3+a^3+1+1+1+1}\)

\(\le\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{2\sqrt{3}}{6\sqrt{ac}}=\frac{1}{\sqrt{3ab}}+\frac{1}{\sqrt{3bc}}+\frac{1}{\sqrt{3ac}}\)\(=\frac{1}{\sqrt{3}}\left(\frac{1}{\sqrt{ab}}+\frac{1}{\sqrt{ac}}+\frac{1}{\sqrt{bc}}\right)\)

\(\le\frac{1}{\sqrt{3}}\sqrt{3\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}=\sqrt{\left(\frac{1}{ab}+\frac{1}{ac}+\frac{1}{bc}\right)}\le\sqrt{3}\) (Bunhiacopxki)

Dấu "=" xảy ra\(\Leftrightarrow a=b=c=1\)

PS : Thánh cx đc phết ha; chế đc bài này tui mới khâm phục :)))

28 tháng 5 2018

nó ko chém đâu anh nó chép trong toán tuổi thơ đấy,thk này khốn nạn lắm

26 tháng 5 2018

tích đi rồi ta làm

26 tháng 5 2018

tích đi bạn

8 tháng 2 2017

mk làm r` đây nhé Câu hỏi của Lê Chí Cường - Toán lớp 9 - Học toán với OnlineMath

8 tháng 2 2017

đề liên quan quá vậy

NV
22 tháng 2 2021

\(P=\dfrac{ab}{a+b}+\dfrac{bc}{b+c}+\dfrac{ca}{c+a}\)

\(P\le\dfrac{ab}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)+\dfrac{bc}{4}\left(\dfrac{1}{b}+\dfrac{1}{c}\right)+\dfrac{ca}{4}\left(\dfrac{1}{c}+\dfrac{1}{a}\right)\)

\(\Leftrightarrow P\le\dfrac{1}{2}\left(a+b+c\right)=3\)

\(P_{max}=3\) khi \(a=b=c\)

20 tháng 2 2018

a) Từ giả thiết : \(a^2+2c^2=3b^2+19\Rightarrow a^2+2c^2-3b^2=19\)

Ta có : \(\frac{a^2+7}{4}=\frac{b^2+6}{5}=\frac{c^2+3}{6}=\frac{3b^2+18}{15}=\frac{2c^2+6}{12}\)\(=\frac{a^2+7+2c^2+6-3b^2-18}{4+12-15}=\frac{14}{1}=14\)

\(\Rightarrow\)\(a^2=49\Rightarrow a=7\)

\(\Rightarrow\)\(b^2=64\Rightarrow b=8\)

\(\Rightarrow\)\(c^2=81\Rightarrow c=9\)

b) \(P=x^4+2x^3+3x^2+2x+1\)

\(=\left(x^4+2x^2+1\right)+\left(2x^3+2x\right)+x^2=\left(x^2+1\right)^2+2x\left(x^2+1\right)+x^2\)

\(=\left(x^2+x+1\right)^2\)

Vì \(x^2+x+1=\left(x^2+2x\frac{1}{2}+\frac{1}{4}\right)+\frac{3}{4}=\left(x+\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Nên \(P\ge\left(\frac{3}{4}\right)^2=\frac{9}{16}\)

Dấu bằng xảy ra khi và chỉ khi \(x=-\frac{1}{2}\)

21 tháng 2 2018

Bố già giỏi qa

1 tháng 5 2017

bài này ko khác gì câu 921427 nhé bạn, có điều bạn tìm cách tách a + 3b + 2c = (a + b) + (b + c) + (b + c)

Thêm nữa, áp dụng BĐT   \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\)  với a, b, c > 0

Đẳng thức xảy ra khi và chỉ khi a = b = c.

20 tháng 2 2020

EZ!!!Sau khi sử dụng 1 số bđt đơn giản, ta sẽ được:

\(\text{Σ}_{cyc}\frac{ab}{a+3b+2c}\le\frac{1}{9}\text{Σ}_{cyc}\left(\frac{ab}{a+c}+\frac{ab}{b+c}+\frac{a}{2}\right)=K\)

\(P\le K=\frac{1}{9}\left[\text{Σ}_{cyc}\left(\frac{ab}{a+c}+\frac{bc}{a+c}\right)+\frac{a+b+c}{2}\right]\)

\(=\frac{1}{9}\left(b+a+c+\frac{a+b+c}{2}\right)=\frac{a+b+c}{6}\le1\)

Dấu "=" xảy ra khi và chỉ khi a = b = c = 2