Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(VP^2\le2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\) (1)
\(VT^2=\left(\frac{a^4}{a}+\frac{b^4}{b}+\frac{c^4}{c}\right)^2\ge\frac{\left(a^2+b^2+c^2\right)\left(a^2+b^2+c^2\right)^3}{\left(a+b+c\right)^2}\)
\(\ge\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)^6}{27\left(a+b+c\right)^2}=\frac{\left(a^2+b^2+c^2\right)\left(a+b+c\right)\left(a+b+c\right)^3}{27}\)
\(\ge\frac{\left(a+b+c\right)\left(a^2+b^2+c^2\right)\left(3\sqrt[3]{abc}\right)^3}{27}=2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\ge VP^2\) (2)
Mà VT và VP đều dường nên từ (1) và (2) suy ra đpcm
Dấu "=" xảy ra khi \(a=b=c=\sqrt[3]{2}\)
doan thi khanh linh câm cái mồm đi.đã ngu lại còn thích k
áp dụng co si ta có:
\(\frac{b+c}{\sqrt{a}}+\frac{c+a}{\sqrt{b}}+\frac{a+b}{\sqrt{c}}\ge\frac{2\sqrt{bc}}{\sqrt{a}}+\frac{2\sqrt{ca}}{\sqrt{b}}+\frac{2\sqrt{ab}}{\sqrt{c}}\)
\(=\left(\frac{\sqrt{bc}}{\sqrt{a}}+\frac{\sqrt{ca}}{\sqrt{b}}\right)+\left(\frac{\sqrt{ca}}{\sqrt{b}}+\frac{\sqrt{ab}}{\sqrt{c}}\right)+\left(\frac{\sqrt{ab}}{\sqrt{c}}+\frac{\sqrt{bc}}{\sqrt{a}}\right)\)
\(\ge2\sqrt{a}+2\sqrt{b}+2\sqrt{c}=\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)+\left(\sqrt{a}+\sqrt{b}+\sqrt{c}\right)\)
\(\ge\sqrt{a}+\sqrt{b}+\sqrt{c}+3\sqrt[3]{\sqrt{abc}}=\sqrt{a}+\sqrt{b}+\sqrt{c}+3\)
\(\Rightarrow Q.E.D\)
Áp dụng bất đẳng thức Bunhiacopxki ta có \(\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\le2\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)\(=abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\)
Theo một bất đẳng thức quen thuộc ta có \(abc\left(a+b+c\right)\le\frac{1}{3}\left(ab+bc+ca\right)^2\)
Từ đó ta được \(abc\left(a+b+c\right)\left(a^2+b^2+c^2\right)\le\frac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)^2}{3}\)\(\le\frac{\left(a^2+b^2+c^2+ab+bc+ca+ab+bc+ca\right)^3}{3^4}=\frac{\left(a+b+c\right)^6}{3^4}\)
Do đó ta có \(\left(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\right)^2\le\frac{\left(a+b+c\right)^6}{3^4}\)hay \(a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\le\frac{\left(a+b+c\right)^3}{3^2}\)(*)
Dễ dàng chứng minh được \(a^3+b^3+c^3\ge\frac{\left(a+b+c\right)^3}{9}\)(**)
Từ (*) và (**) suy ra \(a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi \(a=b=c=\sqrt[3]{2}\)
Xét hiệu : \(a^3+b^3-ab\left(a+b\right)=\left(a-b\right)^2\left(a+b\right)\ge0,\forall a,b>0\)
\(\Rightarrow a^3+b^3\ge ab\left(a+b\right)\)
Áp dụng BĐT AM-GM :
\(a^3+b^3+2c^3\ge ab\left(a+b\right)+2c^3\ge2\sqrt{ab\left(a+b\right).2c^3}=2\sqrt{4c^2\left(a+b\right)}\)
\(=4c\sqrt{a+b}\)
Hoàn toàn tương tự
\(a^3+2b^3+c^3\ge4b\sqrt{a+c};2a^3+b^3+c^3\ge4a\sqrt{b+c}\)
Cộng thao vế bất đẳng thức vừa thu được
\(\Rightarrow a^3+b^3+c^3\ge a\sqrt{b+c}+b\sqrt{c+a}+c\sqrt{a+b}\left(đpcm\right)\)
Dấu " = " xảy ra khi \(a=b=c=\sqrt[3]{2}\)
Chúc bạn học tốt !!!
Ta co:
\(\sqrt{2\left(b+1\right)}\le\frac{b+3}{2}\Rightarrow\frac{a}{\sqrt{2\left(b+1\right)}}\ge\frac{2a}{b+3}\)
Tuong tu:\(\frac{b}{\sqrt{2\left(c+1\right)}}\ge\frac{2b}{c+3};\frac{c}{\sqrt{2\left(a+1\right)}}\ge\frac{2c}{a+3}\)
\(\Rightarrow\frac{1}{\sqrt{2}}\left(\frac{a}{\sqrt{b+1}}+\frac{b}{\sqrt{c+1}}+\frac{c}{\sqrt{a+1}}\right)\ge2\left(\frac{a}{b+3}+\frac{b}{c+3}+\frac{c}{a+3}\right)\)
\(\frac{a}{b+3}+\frac{b}{c+3}+\frac{c}{a+3}\)
\(=\frac{a^2}{ab+3a}+\frac{b^2}{bc+3b}+\frac{c^2}{ca+3c}\ge\frac{\left(a+b+c\right)^2}{ab+bc+ca+9}\ge\frac{\left(a+b+c\right)^2}{\frac{\left(a+b+c\right)^2}{3}+9}=\frac{9}{\frac{9}{3}+9}=\frac{3}{4}\)
\(\Rightarrow2\left(\frac{a}{b+3}+\frac{b}{c+3}+\frac{c}{a+3}\right)\ge\frac{3}{2}\)
Hay \(\frac{a}{\sqrt{b+1}}+\frac{b}{\sqrt{c+1}}+\frac{c}{\sqrt{a+1}}\ge\frac{3\sqrt{2}}{2}\)
Dau '=' xay ra khi \(a=b=c=3\)
\(VP=\frac{1}{2}\Sigma\sqrt{4\left(a^2b+a^2c\right)}\le\frac{1}{4}\Sigma\left(4+a^2b+a^2c\right)\)
\(=3+\frac{1}{4}\Sigma ab\left(a+b\right)\le3+\frac{1}{2}\left(a^3+b^3+c^3\right)\)
\(=\frac{1}{2}\left(a^3+b^3+c^3+3abc\right)\le a^3+b^3+c^3\)
Đẳng thức xảy ra khi \(a=b=c\)
Sang học 24 tìm ai tên Perfect Blue nhé t làm bên đó rồi đưa link thì lỗi ==" , tìm tên đăng nhập springtime ấy
Đặt \(\hept{\begin{cases}\sqrt{a^2+b^2}=x\\\sqrt{b^2+c^2}=y\\\sqrt{c^2+a^2}=z\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x,y,z>0\\x+y+z=1\end{cases}}\)
Và \(\hept{\begin{cases}a^2=\frac{x^2+z^2-y^2}{2}\\b^2=\frac{x^2+y^2-z^2}{2}\\c^2=\frac{y^2+z^2-x^2}{2}\end{cases}}\) và \(\hept{\begin{cases}b+c\le\sqrt{2\left(b^2+c^2\right)}=\sqrt{2}y\\a+b\le\sqrt{2}x\\c+a\le\sqrt{2}z\end{cases}}\)
\(\Rightarrow VT\ge\frac{1}{2\sqrt{2}}\left(\frac{x^2+z^2-y^2}{y}+\frac{x^2+y^2-z^2}{2z}+\frac{y^2+z^2-x^2}{x}\right)\)
\(\ge\frac{1}{2\sqrt{2}}\left(\frac{2\left(x+y+z\right)^2}{x+y+z}-\left(x+y+z\right)\right)\)
\(=\frac{1}{2\sqrt{2}}\left(x+y+z\right)=\frac{1}{2\sqrt{2}}\)