K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 3 2018

Từ: \(a+b+c=1\Leftrightarrow a=1-b-c\)

Mà theo đề bài:

\(a\le b+1\le c+2\)

\(\Rightarrow1-b-c\le b+1\le c+2\)

\(\Rightarrow2\left(c+2\right)\ge1-b-c+b+1\)

\(\Rightarrow2c+4\ge2-c\Leftrightarrow3c+4\ge2\Leftrightarrow3c\ge-2\Leftrightarrow c\ge-\frac{2}{3}\)

14 tháng 3 2018

Từ: a+b+c=1⇔a=1−b−c

Mà theo đề bài:

a≤b+1≤c+2

⇒1−b−c≤b+1≤c+2

⇒2(c+2)≥1−b−c+b+1

⇒2c+4≥2−c⇔3c+4≥2⇔3c≥−2⇔c≥−23 

...

5 tháng 2 2020

Vì 0 ≤ a ≤ b + 1 ≤ c + 2

=> 0 ≤ a + b + 1 + c + 2 ≤ c + 2 + c + 2 + c + 2

=> 0 ≤ 4 ≤ 3c + 6 (vì a + b + c = 1)

=> 3c + 6 ≥ 4

=> 3c ≥ -2 => c ≥ -2/3

Dấu " = " xảy ra <=> a + b + c = 1 <=> a + b + (-2/3) = 1 <=> a + b = 5/3

Vậy GTNN của c là -2/3 khi đó a + b = 5/3

7 tháng 2 2020

Chắc em nhầm cô ạ!! Làm lại là:

Vì: \(0\le a\le b+1\le c+2\Rightarrow a+b+c\le c+2+c+1+c\)

\(\Leftrightarrow1\le3c+3\left(a+b+c=1\right)\)Hay \(3c\ge-2\Rightarrow c\ge-\frac{2}{3}\)

Vậy \(Min_C=-\frac{2}{3}\) Khi đó: \(a=\frac{4}{3};b=\frac{1}{3}\)

27 tháng 3 2016

GIANG ƠI ! GIÚP MÌNH ĐI

7 tháng 2 2019

đề là J bạn ghi rõ vào tớ ko thấy :(((

7 tháng 2 2019

Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a = b +1 =c+2 <=> a = 1, b = 0, c = -1
KL: Gía trị nhỏ nhất của c = -1

12 tháng 3 2019

Vì 0 ≤ a ≤ b + 1 ≤ c + 2 nên ta có a + b+c ≤ (c+2)+ (c+2) + c
<=> 1 ≤ 3c+ 4 <=> -3 ≤ 3c <=> -1≤ c
Dấu bằng xảy ra <=> a+b+c=1 và a = b +1 =c+2 <=> a = 1, b = 0, c = -1
KL: Gía trị nhỏ nhất của c = -1

12 tháng 3 2019

\(0\le a\le b+1\le c+2\\\)

\(\Rightarrow0\le a+b+1+c+2\le\left(c+2\right)+\left(c+2\right)+\left(c+2\right)=3c+6\)

\(\Rightarrow\left(a+b+c\right)+1+2\le3c+6\)

\(\Rightarrow4\le3c+6\)

\(c\ge\frac{-2}{3}\)

Vậy GTNN của c là \(\frac{-2}{3}\)\(\Leftrightarrow\)a+b=\(\frac{5}{3}\)

15 tháng 2 2019

Ta có : 0 ≤ a ≤ b + 1 ≤ c + 2 

=> a + b + 1 + c + 2 ≤ 3( c + 2 )

=> a + b + c + 3 ≤ 3c + 6

=> a + b + c ≤ 3c + 3

vì a + b + c = 1  => 3c + 3 ≥ 1 => 3c ≥ - 2 <=> c ≥  \(-\frac{2}{3}\)

Để c đạt giá trị nhỏ nhất <=> c = \(-\frac{2}{3}\)

=> a + b = \(1-\left(-\frac{2}{3}\right)\)\(\frac{5}{3}\)

Ta lại có: 0 ≤ a ≤ b + 1

=> a + b ≤ 2b + 1

=> \(\frac{5}{3}\)≤ 2b + 1       

=> 2b ≥ \(\frac{2}{3}\)   => b ≥ \(\frac{1}{3}\)

mà b + 1 ≤ c + 2  => b ≤ \(-\frac{2}{3}+1\)   => b ≤ \(\frac{1}{3}\)

=> b = \(\frac{1}{3}\)

mà a + b = \(\frac{5}{3}\)   => a = \(\frac{4}{3}\)

Vậy GTNN c = \(-\frac{2}{3}\) <=> a = \(\frac{4}{3}\); b\(=\frac{1}{3}\)

27 tháng 1 2019

Trả lời giúp mình với . Thanks.

1 tháng 9 2017

Gọi số cần tìm là abc, số mới là 1abc. 

Ta có 1abc = 9 x abc 

<=> 1000 + abc = 9 x abc 

<=> 1000 = 8 x abc 

<=> abc = 1000 : 8 

<=> abc = 125 

làm tương tự bài trên nha