\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=6abc...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
19 tháng 4 2020

Lời giải:

Ta có:

$a^3+b^3+c^3-3abc=(a+b)^3-3ab(a+b)+c^3-3abc$

$=(a+b)^3+c^3-3ab(a+b+c)$

$=(a+b+c)[(a+b)^2-c(a+b)+c^2]-3ab(a+b+c)$

$=(a+b+c)[(a+b)^2-c(a+b)+c^2-3ab]=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)$

$=\frac{1}{2}(a+b+c)(2a^2+2b^2+2c^2-2ab-2bc-2ac)$

$=\frac{1}{2}(a+b+c)[(a-b)^2+(b-c)^2+(c-a)^2]$

$=\frac{1}{2}(a+b+c).6abc=3abc(a+b+c)$

$\Rightarrow a^3+b^3+c^3=3abc(a+b+c+1)$ (đpcm)

AH
Akai Haruma
Giáo viên
12 tháng 9 2017

Lời giải:

Ta có:

\((a-b)^2+(b-c)^2+(c-a)^2=6abc\)

\(\Leftrightarrow a^2+b^2+c^2-(ab+bc+ac)=3abc\)

\(\Leftrightarrow (a+b+c)^2-3(ab+bc+ac)=3abc\)

Đặt \((a+b+c,ab+bc+ac,abc)=(p,q,r)\)

\(\Rightarrow p^2-3q=3r\)

Khi đó, \(a^3+b^3+c^3=(a+b+c)^3-3(a+b)(b+c)(c+a)\)

\(\Leftrightarrow a^3+b^3+c^3=(a+b+c)^3-3(a+b+c)(ab+bc+ac)+3abc\)

\(\Leftrightarrow a^3+b^3+c^3=p^3-3pq+3r=p(p^2-3q)+3r=3pr+3r\)

Vậy \(a^3+b^3+c^3=3abc(a+b+c+1)\)

Chắc bạn viết thiếu.

Câu 1: 

a: \(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)

\(=a^3+b^3\)

b: \(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

4 tháng 3 2018

=> Theo bđt cô si ta có : B≥33√(x2+1y2 )(y2+1z2 )(z2+1x2 )

=> B≥33√2·xy ·2·yz ·2·zx =33√8=6 

( Chỗ này là thay x2+1y2 ≥2√x2y2 =2·xy  và 2 cái kia tương tự vào )

=> Min B=6

Mình nhầm chỗ câu b, sửa lại là :

B≥33√√(x2+1y2 )(y2+1z2 )(z2+1x2 )

Bạn làm tương tự => B≥3√2.

15 tháng 8 2017

Câu 1:
a) a(a+2b)3 - b(2a+b)3 = a( a3 + 6a2b + 12ab2 + 8b2) - b
= a( a3 + 6a2b + 12ab2 + 8b3) - b( 8a3 + 12a2b + 6ab2 + b3)
= a4 + 6a3b + 12a2b2 + 8ab3 - 8a3b -12a2b2 - 6ab3 - b4
= a4 - 2a3b + 2ab3 - b4
= (a - b )(a + b)(a2 +b2) - 2ab(a - b)(a + b)
= (a - b )(a + b)(a2 +b2 -2ab)
= (a - b )3(a + b)

15 tháng 8 2017

Giải quyết câu 2 hộ mình với.

20 tháng 10 2019

a, \(\left(a+b+c\right)^2=3\left(ab+bc+ac\right)\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ac=3\left(ab+bc+ac\right)\)

\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ac=0\Leftrightarrow\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

=> a=b=c

20 tháng 10 2019

b, \(0=\left(a+b+c\right)^3=a^3+b^3+c^3+6abc+3a^2b+3ab^2+3b^2c+3bc^2+3c^2a+3ca^2\)

\(=a^3+b^3+c^3+6abc+3ab\left(a+b\right)+3bc\left(b+c\right)+3ac\left(a+c\right)\)

\(=a^3+b^3+c^3+6abc-3abc-3abc-3abc\)

\(\Rightarrow a^3+b^3+c^3=3abc\)

3 tháng 8 2017

Bạn chứng minh đẳng thức sau nhé:  \(x^3+y^3+z^3-3xyz=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-yz-zx\right)\)                                                                                                \(=\frac{1}{2}\left(x+y+z\right)\left[\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2\right]\)

Bạn nhìn thử xem cái ta đi chứng minh có giống với giả thiết của đề bài ko. Giả sử đặt ab=x, bc=y, ac=z.

Khi đó \(x^3+y^3+z^3=3xyz\Rightarrow x^3+y^3+z^3-3xyz=0\)

Do đó xảy ra 2 trường hợp: x+y+z=0 hoặc \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Vì a,b,c là các số thực dương nên \(x+y+z\ne0\)do đó \(\left(x-y\right)^2+\left(y-z\right)^2+\left(z-x\right)^2=0\)

Suy ra: x=y=z hay ab=bc=ac hay a=b=c.

Từ đó suy ra điều phải chứng minh. Có gì thắc mắc liên hệ với mình nha.