Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có abc=1 nên
1/(1+a+ab)=abc/(abc+a+ab)
=abc/[a(1+b+bc)]
=bc/(1+b+bc)
1/(1+c+ac)=abc/(abc+c.abc+ac)
=abc/[ca(1+b+bc)]=b/(1+b+bc)
=>1/(1+a+ab) + 1/(1+b+bc)+ 1/(1+c+ac)
=bc/(1+b+bc)+1/(1+b+bc)+b/(1+b+bc)
=(1+b+bc)/(1+b+bc)
=1
=>1/(1+a+ab) + 1/(1+b+bc)+ 1/(1+c+ac)=1
ràu xong
Có: \(\frac{a}{1+ab}=\frac{b}{1+bc}=\frac{c}{1+ac}\)
Vì a, b, c đôi một khác nhau nên suy ra a, b, c khác 0.
=> \(\frac{1+ab}{a}=\frac{1+bc}{b}=\frac{1+ac}{c}\)
=> \(\frac{1}{a}+b=\frac{1}{b}+c=\frac{1}{c}+a\)
=> \(\hept{\begin{cases}\frac{1}{a}+b=\frac{1}{b}+c\\\frac{1}{b}+c=\frac{1}{c}+a\\\frac{1}{c}+a=\frac{1}{a}+b\end{cases}}\)=> \(\hept{\begin{cases}\frac{b-a}{ab}=c-b\\\frac{c-b}{bc}=a-c\\\frac{a-c}{ac}=b-a\end{cases}}\)
Nhân vế theo vế ta có: \(\frac{\left(b-a\right)\left(c-b\right)\left(a-c\right)}{ab.bc.ac}=\left(c-b\right)\left(a-c\right)\left(b-a\right)\)
=> \(\frac{1}{a^2b^2c^2}=1\)
=> \(\left(abc\right)^2=1\)
=> \(M=abc=\pm1\)
\(S=\frac{abc}{abc+a+ab}+\frac{1}{1+b+bc}+\frac{bc}{bc+bc^2+c^2ab}=\frac{bc}{bc+1+b}+\frac{1}{1+b+bc}+\frac{b}{b+bc+1}\)
\(=\frac{1+b+bc}{1+bc+b}=1\rightarrow S=1\)
\(S=\frac{1}{1+a+ab}+\frac{1}{1+b+bc}+\frac{1}{1+c+ac}\)
=\(\frac{c}{c\left(1+a+ab\right)}+\frac{ac}{ac\left(1+b+bc\right)}+\frac{1}{1+c+ac}\)
=\(\frac{c}{c+ac+abc}+\frac{ac}{ac+abc+abc.c}+\frac{1}{1+c+ac}\)
thay abc=1 ta được:
\(\frac{c}{c+ac+1}+\frac{ac}{ac+1+c}+\frac{1}{1+c+ac}\)(cùng mẫu c+ac+1)
=\(\frac{c+ac+1}{c+ac+1}=1\)
vậy S=1
\(HUY=\frac{abc}{abc+a+ab}+\frac{1}{1+b+bc}+\frac{b}{b+bc+abc}=\frac{bc}{bc+1+b}+\frac{1}{1+b+bc}+\frac{b}{b+bc+1}=1\)