Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{b^2+c^2-a^2}{bc}+\frac{c^2+a^2-b^2}{ac}+\frac{a^2+b^2-c^2}{ab}\)
\(=\frac{b^2+\left(c-a\right)\left(c+a\right)}{bc}+\frac{c^2+\left(a-b\right)\left(a+b\right)}{ac}+\frac{a^2+\left(b-c\right)\left(b+c\right)}{ab}\)
\(>\frac{b^2+\left(c-a\right).b}{bc}+\frac{c^2+\left(a-b\right).c}{ac}+\frac{a^2+\left(b-c\right).a}{ab}\)(BĐT tam giác)
\(=\frac{b+c-a}{c}+\frac{c+a-b}{a}+\frac{a+b-c}{b}\)
rồi sao đứng bánh r
Giải bằng lập luận tương đương nhá
Ta có: \(A=\frac{b^2+c^2+2bc-a^2}{bc}+\frac{c^2+a^2-2ca-b^2}{ac}+\frac{a^2+b^2-2ab-c^2}{ab}>0\)
\(\Leftrightarrow A=\frac{\left(b+c\right)^2-a^2}{bc}+\frac{\left(c-a\right)^2-b^2}{ac}+\frac{\left(a-b\right)^2-c^2}{ab}>0\)
\(\Leftrightarrow A=\frac{\left(b+c-a\right)\left(a+b+c\right)}{bc}+\frac{\left(c-a-b\right)\left(b+c-a\right)}{ac}+\frac{\left(a-b-c\right)\left(a+c-b\right)}{ab}>0\)
cmđ cái phân số đầu >0
2p/s sau quy đồng, lấy nhân tử chung là b+c-a là ra