K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 1 2017

Từ \(\frac{ab}{a+b}=\frac{bc}{b+c}=\frac{ca}{c+a}\) suy ra \(\frac{a+b}{ab}=\frac{b+c}{bc}=\frac{c+a}{ca}\)

\(\Rightarrow\frac{1}{b}+\frac{1}{a}=\frac{1}{c}+\frac{1}{b}=\frac{1}{a}+\frac{1}{c}\)

\(\Rightarrow\hept{\begin{cases}\frac{1}{a}+\frac{1}{b}=\frac{1}{b}+\frac{1}{c}\\\frac{1}{b}+\frac{1}{c}=\frac{1}{c}+\frac{1}{a}\\\frac{1}{c}+\frac{1}{a}=\frac{1}{a}+\frac{1}{b}\end{cases}}\)\(\Rightarrow\frac{1}{a}=\frac{1}{b}=\frac{1}{c}\Rightarrow a=b=c\)

Khi đó \(M=\frac{ab+bc+ca}{a^2+b^2+c^2}=\frac{a^2+a^2+a^2}{a^2+a^2+a^2}=1\)

20 tháng 12 2018

Bài 3 :

a) Theo đề bài ta có : \(2a=3b=4c\)

\(\Rightarrow\frac{a}{6}=\frac{b}{4}=\frac{c}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{a}{6}=\frac{b}{4}=\frac{c}{3}=\frac{a+b-c}{6+4-3}=\frac{21}{7}=3\)

\(\Rightarrow\hept{\begin{cases}\frac{a}{6}=3\\\frac{b}{4}=3\\\frac{c}{3}=3\end{cases}\Rightarrow\hept{\begin{cases}a=18\\b=12\\c=9\end{cases}}}\)

Vậy.........

20 tháng 12 2018

Đặt \(A=\frac{a+b+3c}{a+b-2c}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có :

\(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}=\frac{1+2+3}{a+b+b+c+a+c}=\frac{6}{2\left(a+b+c\right)}=\frac{3}{a+b+c}\)

\(\Rightarrow\hept{\begin{cases}\frac{3}{a+b}=\frac{3}{a+b+c}\\\frac{2}{b+c}=\frac{3}{a+b+c}\\\frac{1}{c+a}=\frac{3}{a+b+c}\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3a+3b+3c=3a+3b\\2a+2b+2c=3b+3c\\a+b+c=3a+3c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}3c=0\\2a=b+c\\b=2a+2c\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}c=0\\2a=b\\b=2a\end{cases}}\)

Thay vào A ta có :

\(A=\frac{a+2a+0}{a+2a-0}\)

\(A=\frac{3a}{3a}\)

\(A=1\)

2 tháng 1 2020

Câu hỏi của Đậu Đình Kiên - Toán lớp 7 - Học toán với OnlineMath

27 tháng 12 2019

https://olm.vn/hoi-dap/detail/221248297106.html

tham khảo nhé

Áp dụng tính chất dãy tỉ số bằng nhau, ta có:

\(\frac{3}{a+b}=\frac{2}{b+c}=\frac{1}{c+a}=\frac{3+2+1}{a+b+b+c+c+a}=\frac{6}{2\left(a+b+c\right)}=\frac{3}{a+b+c}\)

\(\rightarrow a+b=a+b+c\)         \(\rightarrow c=0\)

\(\Rightarrow P=\frac{3a+3b+2019c}{a+b-2020c}=\frac{3\left(a+b\right)+2019\cdot0}{a+b-2020\cdot0}=\frac{3\left(a+b\right)}{a+b}=3\)

13 tháng 12 2019

Tham khảo: Câu hỏi của Đậu Đình Kiên