Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chứng minh:
Đặt \(\dfrac{a}{2013}=\dfrac{a}{2014}=\dfrac{a}{2015}=k\)
\(\Rightarrow a=2013k,b=2014k,c=2015k\)
Vế trái
\(4\left(2013k-2014k\right).\left(2015k-2016k\right)\)\(=4.-k.-k=4k^2\)
Vế phải
\(\left(2015k-2013k\right)^2\)\(=\left(2k\right)^2=4k^2\)
\(\Rightarrow\)4(a−b).(b−c)=(c−a)\(\Rightarrow\)đpcm
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{2013}=\dfrac{b}{2014}=\dfrac{c}{2015}=\dfrac{a-b}{2013-2014}=\dfrac{b-c}{2014-2015}=\dfrac{c-a}{2015-2013}\)\(\Rightarrow\dfrac{a-b}{-1}=\dfrac{b-c}{-1}=\dfrac{c-a}{2}\)
\(\Rightarrow\dfrac{a-b}{-1}.\dfrac{b-c}{-1}=\left(\dfrac{c-a}{2}\right)^2\)
\(\Rightarrow\dfrac{\left(a-b\right)\left(b-c\right)}{1}=\dfrac{\left(c-a\right)^2}{4}\)
\(\Rightarrow4\left(a-b\right)\left(b-c\right)=\left(c-a\right)^2\) (đpcm)
Bài 1:
Áp dụng t.c của dãy tỉ số bằng nhau, ta có:
\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\\ =\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a^3}{b^3}=\dfrac{a.b.c}{b.c.d}=\dfrac{a}{d}\left(dpcm\right)\)
ko đúng đấy chứ
mình nhầm :
2) Vì /2x-3y/2015 lớn h+n hoặc bằng 0
và (x+y+x)2014 lớn hơn hoặc bằng 0 (với mọi x , y )
Mà /2x-3y/2015+ (x+y+z)2014 = 0
=) x+y+z = 0 (1)
=)2x- 3y = 0
=) x+y+x =0
=) 2(x+y+x)=0
=) 2x + 2y + 2x = 0
=) 3y+2y+3y = 0
=) 7y=0 =)y=0
thay y =0 vào (1)
=) ta có : x+y+x=0
=)x+0+x = 0
=) 2x=0 =) x=0
Vậy (x,y) = (0,0)
vì vai trò của a,b,c,d như nhau, giả sử \(a\ge b\ge c\ge d\)
áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{\left|a-b\right|}{2}=\dfrac{\left|b-c\right|}{23}=\dfrac{\left|c-d\right|}{32}=\dfrac{\left|d-a\right|}{223}\)
=\(\dfrac{a-b+b-c+c-d-\left(-d+a\right)}{-166}=0\)
\(\Rightarrow a+b=0\Rightarrow a=b\) (1)
\(b-c=0\Rightarrow b=c\) (2)
\(c-d=0\Rightarrow c=d\) (3)
từ (1),(2) và (3) suy ra: a=b=c=d
Lời giải:
Ta có:
\(\frac{b-c}{(a-b)(a-c)}+\frac{c-a}{(b-a)(b-c)}+\frac{a-b}{(c-a)(c-b)}=2013\)
\(\Leftrightarrow \frac{-(b-c)^2}{(a-b)(b-c)(c-a)}+\frac{-(c-a)^2}{(a-b)(b-c)(c-a)}+\frac{-(a-b)^2}{(a-b)(b-c)(c-a)}=2013\)
\(\Leftrightarrow \frac{-[(a-b)^2+(b-c)^2+(c-a)^2]}{(a-b)(b-c)(c-a)}=2013\)
\(\Rightarrow \frac{2(a^2+b^2+c^2-ab-bc-ac)}{(a-b)(b-c)(c-a)}=-2013(*)\)
Lại có:
\(P=\frac{1}{a-b}+\frac{1}{b-c}+\frac{1}{c-a}\)
\(=\frac{(b-c)(c-a)+(c-a)(a-b)+(a-b)(b-c)}{(a-b)(b-c)(c-a)}\)
\(=\frac{bc-ba-c^2+ca+ca-bc-a^2+ab+ab-ac-b^2+bc}{(a-b)(b-c)(c-a)}\)
\(=\frac{ab+bc+ac-(a^2+b^2+c^2)}{(a-b)(b-c)(c-a)}=-\frac{1}{2}.\frac{2(a^2+b^2+c^2-ab-bc-ac)}{(a-b)(b-c)(c-a)}\)
\(=\frac{-1}{2}.-2013=\frac{2013}{2}\) (theo $(*)$)
4.a
\(\dfrac{3x-y}{x+y}=\dfrac{3}{4}\\ \Leftrightarrow\left(3x-y\right).4=3\left(x+y\right)\\ \Rightarrow12x-4y=3x+3y\\ \Rightarrow12x-3x=4y+3y\\ \Rightarrow9x=7y\\ \Rightarrow\dfrac{x}{y}=\dfrac{7}{9}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) \(\Rightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\) (*)
a) Từ (*)suy ra:
\(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(bk\right)^2+b^2}{\left(dk\right)^2+d^2}=\dfrac{b^2.k^2+b^2}{d^2.k^2+d^2}=\dfrac{b^2\left(k^2+1\right)}{d^2\left(k^2+1\right)}\)\(=\dfrac{b^2}{d^2}\) (1)
\(\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}=\dfrac{\left(bk+b\right)^2}{\left(dk+d\right)^2}=\dfrac{\left[b\left(k+1\right)\right]^2}{\left[d\left(k+1\right)\right]^2}=\dfrac{b^2.\left(k+1\right)^2}{d^2.\left(k+1\right)^2}=\dfrac{b^2}{d^2}\)(2)
Từ (1) và (2) suy ra: \(\dfrac{a^2+b^2}{c^2+d^2}=\dfrac{\left(a+b\right)^2}{\left(c+d\right)^2}\) (đpcm)
b) Tương tự câu a nhé bạn!
Đặt \(\frac{a}{2013}=\frac{b}{2014}=\frac{c}{2015}=k\Rightarrow\hept{\begin{cases}a=2013k\\b=2014k\\c=2015k\end{cases}}\)
Ta có: 4(a - b)(b - c) = 4(2013k - 2014k)(2014k - 2015k) = 4(-k)(-k) = 4k2 (1)
(c - a)2 = (2015k - 2013k)2 = (2k)2 = 4k2 (2)
Từ (1) và (2) ta có đpcm
Đặt a2013 =b2014 =c2015 =k⇒{
Ta có: 4(a - b)(b - c) = 4(2013k - 2014k)(2014k - 2015k) = 4(-k)(-k) = 4k2 (1)
(c - a)2 = (2015k - 2013k)2 = (2k)2 = 4k2 (2)
Từ (1) và (2) ta có đpcm