K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 12 2019

có a + b + c = 0

\(\Rightarrow\)a + b = -c

\(\Rightarrow\)(a + b)3 = (-c)3

\(\Rightarrow\)a + b3 + 3ab(a + b) = -c3

\(\Rightarrow\) a + b3 + c3 = 3abc

b) có a + b + c = 0

nên a + b = c

(a + b)2 = c2

nên c2 - a2 - b2 = 2ab

cm tương tự ta có \(a^2-b^2-c^2=2bc\);\(b^2-a^2-c^2=2ac\)

\(P=\frac{a^2}{a^2-b^2-c^2}+\frac{b^2}{b^2-a^2-c^2}+\frac{c^2}{c^2-a^2-b^2}\)

\(=\frac{a^2}{2bc}+\frac{b^2}{2ac}+\frac{c^2}{2ab}\)

\(=\frac{1}{2}\left(\frac{a^3+b^3+c^3}{abc}\right)\)

\(=\frac{1}{2}\cdot3=1,5\)

12 tháng 6 2018

\(a)\) Ta có : 

\(a+b+c=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)^3=0^3\)

\(\Leftrightarrow\)\(a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)=0\)

\(a+b+c=0\)\(\Rightarrow\)\(\hept{\begin{cases}a+b=-c\\b+c=-a\\c+a=-b\end{cases}}\)

\(\Leftrightarrow\)\(a^3+b^3+c^3+3.\left(-c\right)\left(-a\right)\left(-b\right)=0\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(a^3+b^3+c^3=3abc\) ( đpcm ) 

Vậy \(a^3+b^3+c^3=3abc\)

Chúc bạn học tốt ~ 

12 tháng 6 2018

a, a+b+c=0 => a+b=-c 

=>(a+b)3=(-c)3

=>a3+3a2b+3ab2+b3=-c3 

=>a3+3ab(a+b)+b3=-c3

Mà a+b=-c

=>a3-3abc+b3=-c3

=>a3+b3+c3=3abc (đpcm)

b, \(P=\frac{a^2}{bc}+\frac{b^2}{ac}+\frac{c^2}{ab}=\frac{a^3}{abc}+\frac{b^3}{abc}+\frac{c^3}{abc}=\frac{a^3+b^3+c^3}{abc}\)

mà a3+b3+c3=3abc (bài a)

\(\Rightarrow P=\frac{3abc}{abc}=3\)

Vậy P=3

19 tháng 12 2018

phân tích a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0

=>a=b=c(vì a+b+c khác 0)

thay a=b=c vào P

\(a^3+b^3+c^3=3abc\)

\(\Leftrightarrow\)\(a^3+b^3+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc=0\)

\(\Leftrightarrow\)\(\left(a+b\right)^3+c^3-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)=0\)

\(\Leftrightarrow\)\(\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab\right]=0\)

Do \(a+b+c\ne0\) nên \(\left(a+b\right)^2-c\left(a+b\right)+c^2-3ab=0\)

\(\Leftrightarrow\)\(a^2+b^2+c^2-ab-bc-ca=0\)

\(\Leftrightarrow\)\(2a^2+2b^2+2c^2-2ab-2bc-2ca=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)+\left(b^2-bc+c^2\right)+\left(c^2-ca+a^2\right)=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2=0\)

\(\Leftrightarrow\)\(\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}\Leftrightarrow a=b=c}\)

\(\Rightarrow\)\(N=\frac{a^2+b^2+c^2}{\left(a+b+c\right)^2}=\frac{3a^2}{\left(3a\right)^2}=\frac{3a^2}{9a^2}=\frac{1}{3}\)

...

2 tháng 12 2018

Cảm ơn bạn nha

17 tháng 12 2018

Bài 1:

ta có: a + b + c = 0 => a + b = - c => (a+b)2 = (-c)2 => a2 + 2ab + b2 = c2 => a2 + b2 - c2 = -2ab

chứng minh tương tự, ta có: b2 + c2 -a2 = -2bc; c2 + a2 - b2 = -2ac

\(A=\frac{ab}{a^2+b^2-c^2}+\frac{bc}{b^2+c^2-a^2}+\frac{ca}{c^2+a^2-b^2}\)

\(A=\frac{ab}{-2ab}+\frac{bc}{-2bc}+\frac{ca}{-2ac}=-\frac{1}{2}-\frac{1}{2}-\frac{1}{2}=-\frac{3}{2}\)

=> A là số hữu tỉ

...

19 tháng 6 2017

Nhận xét:\(\left(a+b\right)^3=a^3+b^3+3a^2b+3ab^2\)

=>   \(a^3+b^3=\left(a+b\right)^3-3a^2b-3ab^2\)

ta có \(a^3+b^3+c^3-3abc\)

Thay vào biểu thức trên ta có:

\(\left(a+b\right)^3+c^3-3a^2b-3ab^2-3abc\)

\(\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)

=\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)

\(\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

=\(\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)\)

Vay \(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ac-bc-ab\right)\)

Do \(a^3+b^3+c^3=3abc\)và theo đầu bài \(a+b+c\ne0\)nen  \(a^2+b^2+c^2-ac-bc-ab=0\)

=> \(a=b=c\)

Vay  N = \(\frac{3a^2}{\left(3a\right)^2}=\frac{1}{3}\)

13 tháng 12 2020

hi bạn là trai hay gái

29 tháng 1 2019

Hỏi đáp ToánHỏi đáp Toán