Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Phương trình hoành độ giao điểm (d) và (P):
x2=-2m + m2 + 2
=>x2 + 2m - m2 - 2 = 0(*)
Δ' = m2 - (-m2 - 2)=m2 + m2 + 2=2m2 + 2
Vì 2m2 \(\ge\)0 với mọi m=>2m2 + 2\(\ge\)2>0 vói mọi m=>Phương trình (*) luôn có 2 nghiệm phân biệt vói mọi m=>(D) luôn cắt (P) tại 2 điểm phân biệt
Theo Vi-ét:x1x2=-m2 - 2<0=>(d) cắt (P) tại 2 điểm phân biệt có hoành độ nằm về 2 phía của trục tung
2. Cho parabol: y=ax2. Với a tìm được ở câu 1 hãy xác định m để đường thẳng (d): y=6x+m cắt (p) tại 2 điểm phân biệt A(x1;y1), B(x2;y2) sao cho y1-y2=42
phương trình hoành độ giao điểm:
x^2 = 6x +m
<=> x^2 -6x -m =0
theo định lí vi-et ta có:
x1+x2=6(1) ;x1x2=-m (*)
y1-y2 = 6(x1 -x2)=42(2)
(1)(2)=>x1=13/2 ; x2=-1/2
thay vào (*) => -m=x1x2=-13/4 =>m=13/4