\(\frac{x-y}{4}\)=\(\frac{y-z...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1 2017

Ta có \(2\left(x+y\right)=5\left(y+z\right)=3\left(z+x\right)\)

\(\Leftrightarrow\frac{2\left(x+y\right)}{30}=\frac{5\left(y+z\right)}{30}=\frac{3\left(x+z\right)}{30}\)

\(\Rightarrow\frac{x+y}{15}=\frac{y+z}{6}=\frac{z+x}{10}\)

Xét \(\frac{z+x}{10}=\frac{y+z}{6}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có

\(\frac{z+x}{10}=\frac{y+z}{6}=\frac{\left(z+x\right)-\left(y+z\right)}{4}=\frac{x-y}{4}\) (1)

Xét \(\frac{x+y}{15}=\frac{z+x}{10}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x+y}{15}=\frac{z+x}{10}=\frac{\left(x+y\right)-\left(z+x\right)}{5}=\frac{y-z}{5}\) (2)

Từ (1) và (2)

\(\Rightarrow\frac{x-y}{4}=\frac{y-z}{5}\)

14 tháng 1 2017

thks múc

18 tháng 6 2019

#)Giải :

a) Ta có : \(\frac{x}{3}=\frac{y}{4};\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{x}{15}=\frac{y}{20};\frac{y}{20}=\frac{z}{28}\Rightarrow\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3\)

\(\hept{\begin{cases}\frac{x}{15}=3\\\frac{y}{20}=3\\\frac{z}{28}=3\end{cases}\Rightarrow\hept{\begin{cases}x=45\\y=60\\z=84\end{cases}}}\)

Vậy x = 45; y = 60; z = 84

b) Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{\left(y+z+1\right)+\left(x+z+2\right)+\left(x+y-3\right)}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)

\(\Rightarrow\frac{y+z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{1}{x+y+z}=2\)

\(\Rightarrow\hept{\begin{cases}y+z+1=2x\left(1\right)\\x+z+2=2y\left(2\right)\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x+y-3=2z\left(3\right)\\x+y+z=\frac{1}{2}\left(4\right)\end{cases}}\)

\(\left(+\right)x+y+z=\frac{1}{2}\Rightarrow y+z=\frac{1}{2}-z\)

Thay (1) vào (+) ta được :

\(\frac{1}{2}-x+1=2x\Rightarrow\frac{3}{2}=3x\Rightarrow x=\frac{1}{2}\)

\(\left(+_2\right)x+y+z=\frac{1}{2}\Rightarrow x+z=\frac{1}{2}-y\)

Thay (2) và (+2) ta được :

\(\frac{1}{2}-y+2=2y\Rightarrow\frac{5}{2}=3y\Rightarrow y=\frac{5}{6}\)

\(\left(+_3\right)x+y+z=\frac{1}{2}+\frac{5}{6}+z=\frac{1}{2}\Rightarrow\frac{4}{3}+z=\frac{1}{2}\Rightarrow z=\frac{-5}{6}\)

Vậy \(\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{5}{6}\\z=\frac{-5}{6}\end{cases}}\)

18 tháng 6 2019

\(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)

\(\Rightarrow x=2k;y=3k;z=5k\)

\(\Rightarrow xyz=2k\cdot3k\cdot5k=30k^3\)

Mà \(xyz=810\Rightarrow30k^3=810\)

\(\Rightarrow k^3=27\)

\(\Rightarrow k=3\)

Thay vào tìm x,,z.

16 tháng 8 2019

a) Ta có \(x:2=y:-5.\)

=> \(\frac{x}{2}=\frac{y}{-5}\)\(x-y=14.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{14}{7}=2.\)

\(\left\{{}\begin{matrix}\frac{x}{2}=2=>x=2.2=4\\\frac{y}{-5}=2=>y=2.\left(-5\right)=-10\end{matrix}\right.\)

Vậy \(\left(x;y\right)=\left(4;-10\right).\)

k) Ta có \(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x}{15}=\frac{y}{20}.\)

\(\frac{y}{5}=\frac{z}{7}\Rightarrow\frac{y}{20}=\frac{z}{28}.\)

=> \(\frac{x}{15}=\frac{y}{20}=\frac{z}{28}\)

=> \(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}\)\(2x+3y-z=186.\)

Áp dụng tính chất dãy tỉ số bằng nhau ta được:

\(\frac{2x}{30}=\frac{3y}{60}=\frac{z}{28}=\frac{2x+3y-z}{30+60-28}=\frac{186}{62}=3.\)

\(\left\{{}\begin{matrix}\frac{x}{15}=3=>x=3.15=45\\\frac{y}{20}=3=>y=3.20=60\\\frac{z}{28}=3=>z=3.28=84\end{matrix}\right.\)

Vậy \(\left(x;y;z\right)=\left(45;60;84\right).\)

Mình chỉ làm 2 câu thôi nhé.

Chúc bạn học tốt!

17 tháng 8 2019

Bạn này riết quá, mình cũng đang bận nữa :(

b) \(21x=19y\Leftrightarrow\frac{x}{19}=\frac{y}{21}\)

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{19}=\frac{y}{21}=\frac{x-y}{19-21}=\frac{14}{-2}=-7\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-38\\y=-42\end{matrix}\right.\)

Vậy...

c) Xem lại đề nhé.

d) \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}\Leftrightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{25}=\frac{x^2+y^2-z^2}{4+9-25}=\frac{-12}{-12}=1\)

\(\Leftrightarrow\left\{{}\begin{matrix}x^2=4\\y^2=9\\z^2=25\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\pm2\\y=\pm3\\z=\pm5\end{matrix}\right.\)

Vậy...

e) \(5x=2y\Leftrightarrow\frac{x}{2}=\frac{y}{5}\)(1)

\(3y=5z\Leftrightarrow\frac{y}{5}=\frac{z}{3}\)(2)

Từ (1) và (2) suy ra \(\frac{x}{2}=\frac{y}{5}=\frac{z}{3}=\frac{x+y+z}{2+5+3}=\frac{-720}{10}=-72\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=-144\\y=-360\\z=-216\end{matrix}\right.\)

Vậy...

f) \(\frac{2x}{3}=\frac{3y}{4}=\frac{4z}{5}=\frac{x}{\frac{3}{2}}=\frac{y}{\frac{4}{3}}=\frac{z}{\frac{5}{4}}=\frac{x+y+z}{\frac{3}{2}+\frac{4}{3}+\frac{5}{4}}=12\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=18\\y=16\\z=15\end{matrix}\right.\)

g) Áp dụng TCDTSBN:

\(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=\frac{2\left(x-1\right)+3\left(y-2\right)-\left(z-3\right)}{2\cdot2+3\cdot3-4}\)

\(=\frac{2x-2+3y-6-z+3}{9}=\frac{45}{9}=5\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=11\\y=17\\z=23\end{matrix}\right.\)

Vậy...

h) \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=\frac{x+y-3}{z}=\frac{y-z+1+x+z+2+x+y-3}{x+y+z}=\frac{2x+2y}{x+y+z}\)

Suy ra \(\frac{2x+2y}{x+y+z}=\frac{1}{x+y+z}\Leftrightarrow2x+2y=1\Leftrightarrow x+y=\frac{1}{2}\)

\(\Leftrightarrow\frac{\frac{1}{2}-3}{z}=\frac{1}{\frac{1}{2}+z}\Leftrightarrow z=\frac{5}{6}\)

Từ đó suy ra : \(\frac{y-z+1}{x}=\frac{x+z+2}{y}=-3\)

Ta có hệ :

\(\left\{{}\begin{matrix}y-z+1=-3x\\x+z+2=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y-\frac{5}{6}+1=-3x\\x+\frac{5}{6}+2=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y+\frac{1}{6}=-3x\\x+\frac{17}{6}=-3y\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}y=-3x-\frac{1}{6}\\x+\frac{17}{6}=-3\left(-3x-\frac{1}{6}\right)\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{7}{24}\\y=\frac{-25}{24}\end{matrix}\right.\)

Vậy...

21 tháng 10 2018

Mình làm 1 phép thôi nha những phép còn lại bạn tự nghĩ nhé !

\(\frac{x}{7}=\frac{y}{3}\) và \(x-24=y\)'

Ta có : \(x-24=y\)   hay cũng có thể viết \(x-y=24\)

Ta lại có : \(\frac{x}{7}=\frac{y}{3}\)

Áp dụng tính chất của dãy tỉ số bằng nhau nên ta được :

\(\frac{x}{7}=\frac{y}{3}=\frac{x-y}{7-3}=\frac{24}{4}=6\)          (    vì \(x-y=24\) )

\(\Rightarrow\frac{x}{7}=6\Rightarrow x=6\cdot7\Rightarrow x=42\)

\(\Rightarrow\frac{y}{3}=6\Rightarrow y=6\cdot3\Rightarrow y=18\)

Vậy \(x=42\)         và                 \(y=18\)

26 tháng 7 2017

Áp dụng tính chất của dãy tỉ số bằng nhau, ta  có :

\(\frac{x-1}{3}=\frac{y-2}{4}=\frac{z+7}{5}=\frac{\left(x-1\right)+\left(y-2\right)-\left(z+7\right)}{3+4-5}=\frac{-2}{2}=-1\)

\(\Rightarrow x=-2;y=-2;z=-12\)

26 tháng 7 2017

a)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :

\(\frac{x+1}{3}=\frac{y+2}{4}=\frac{z+3}{5}=\frac{x+1+y+2+z+3}{3+4+5}=\frac{24}{12}=2\)

\(\Rightarrow x=5;y=6;z=7\)

16 tháng 9 2017

Ta có : \(\frac{x-1}{5}=\frac{y-2}{2}=\frac{z-2}{3}=\frac{2y-4}{4}=\frac{x-1+2y-4-\left(z-2\right)}{5+4-3}=\frac{x-1+2y-4-z+2}{6}\)

\(=\frac{x+2y-z-3}{6}=\frac{3}{6}=\frac{1}{2}\)

Nên : \(\frac{x-1}{5}=\frac{1}{2}\Rightarrow x-1=\frac{5}{2}\Rightarrow x=\frac{7}{2}\)

          \(\frac{y-2}{2}=\frac{1}{2}\Rightarrow y-2=1\Rightarrow y=3\)

             \(\frac{z-2}{3}=\frac{1}{2}\Rightarrow z-2=\frac{3}{2}\Rightarrow z=\frac{7}{2}\)

Vậy ,,,,,,,,,,,,,,,,,,

26 tháng 8 2016

khocroiThế câu một các cậu làm được chưa

 

18 tháng 7 2018

\(\frac{x}{y}=\frac{5}{2}\)

\(\Rightarrow\frac{x}{5}=\frac{y}{2}\)

áp dụng t\c của dãy tỉ số bằng nhau ta có :

\(\frac{x}{5}=\frac{y}{2}=\frac{x-y}{5-2}=\frac{15}{3}=5\)

\(\Rightarrow\hept{\begin{cases}x=5\cdot5=25\\y=5\cdot2=10\end{cases}}\)

18 tháng 7 2018

Ta có: x/y=5/2 và x—y=15

==> x/5=y/2 và x—y=15

Áp Dụng tính chất dãy tỉ số bằng nhau, ta có

x/5=y/2= x—y/5–2=15/3=5

Ta được: x=5.5=25

y=5.2=10

b)Ta có:x/9=y/2 và x—3y=18

Áp Dụng tính chất dãy tỉ số bằng nhau, ta có:

x/9=y/2=x/9=3y/6=x—3y/9–6=18/3=6

Ta được: x= 9.6=54

y=2.6=12

c) Ta có: x/7=y/5=z/2 và x—y+z=—40

Áp Dụng dính chất dãy tỉ số bằng nhau, ta có:

x/7=y/5=z/2= x—y+z/7–5+2= —40/ 4=—10

Ta được: x= 7.(—10)=—70

y= 5.(—10)=—50

z= 2.(—10)=—20