Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.
$D=x^3+y^3+2xy=(x+y)^3-3xy(x+y)+2xy=2^3-3xy.2+2xy$
$=8-6xy+2xy=8-4xy=8-4x(2-x)=8-8x+4x^2=(4x^2-8x+4)+4$
$=(2x-2)^2+4\geq 4$
Vậy $D_{\min}=4$. Giá trị này đạt tại $2x-2=0\Leftrightarrow x=1$
$y=2-x=2-1=1$
2.
$A=(2x+1)^2-(3x-2)^2+x-11=4x^2+4x+1-(9x^2-12x+4)+x-11$
$=4x^2+4x+1-9x^2+12x-4+x-11$
$=-5x^2+17x-14$
$-A=5x^2-17x+14=5(x^2-3,4x+1,7^2)-0,45=5(x-1,7)^2-0,45\geq -0,45$
$\Rightarrow A\leq 0,45$
Vâ $A_{\max}=0,45$
Giá trị này đạt tại $x-1,7=0\Leftrightarrow x=1,7$
Bài 1
a) \(A=\left(x+1\right)\left(2x-1\right)=2x^2+x-1=2\left(x^2+\frac{x}{2}-\frac{1}{2}\right)=2\left(x^2+2.\frac{1}{4}.x+\frac{1}{16}-\frac{9}{16}\right)\)\(=2\left[\left(x+\frac{1}{4}\right)^2-\frac{9}{16}\right]=2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\)
Vì \(\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2\ge0\Rightarrow2\left(x+\frac{1}{4}\right)^2-\frac{9}{8}\ge-\frac{9}{8}\)
Dấu "=" xảy ra khi \(\left(x+\frac{1}{4}\right)^2=0\Leftrightarrow x+\frac{1}{4}=0\Leftrightarrow x=-\frac{1}{4}\)
Vậy minA=-9/8 khi x=-1/4
b)\(B=4x^2-4xy+2y^2+1=\left(4x^2-4xy+y^2\right)+y^2+1=\left(2x-y\right)^2+y^2+1\)
Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0\\y^2\ge0\end{cases}}\)=>\(\left(2x-y\right)^2+y^2\ge0\Rightarrow B=\left(2x-y\right)^2+y^2+1\ge1\)
Dấu "=" xảy ra khi (2x-y)2=y2=0 <=> 2x-y=y=0 <=> x=y=0
Vậy minB=1 khi x=y=0
lý luận tương tự bài 1, bài này mình làm tắt
Bài 2:
a) \(C=5x-3x^2+2=-\left(3x^2-5x-2\right)=-3\left(x^2-\frac{5}{3}x-\frac{2}{3}\right)\)
\(=-3\left(x^2-2.\frac{5}{6}.x+\frac{25}{35}-\frac{49}{36}\right)=-3\left[\left(x-\frac{5}{6}\right)^2-\frac{49}{36}\right]=\frac{49}{12}-3\left(x-\frac{5}{6}\right)^2\le\frac{49}{12}\)
Dấu "=" xảy ra khi x=5/6
b)\(D=-8x^2+4xy-y^2+3=3-\left(8x^2-4xy+y^2\right)=3-\left[\left(4x^2-4xy+y^2\right)+4x^2\right]\)
\(=3-\left[\left(2x-y\right)^2+4x^2\right]\le3\)
Dấu "=" xảy ra khi x=y=0
Bài 2: sửa đề: Tìm GTNN
a, \(A=x^2-6x+10=x^2-6x+9+1\)
\(=\left(x-3\right)^2+1\ge1\)
Dấu " = " khi \(\left(x-3\right)^2=0\Leftrightarrow x=3\)
Vậy \(MIN_A=1\) khi x = 3
b, \(B=x^2+y^2-2x+4y+5\)
\(=x^2-2x+1+y^2+4y+4\)
\(=\left(x-1\right)^2+\left(y+2\right)^2\ge0\)
Dấu " = " khi \(\left\{{}\begin{matrix}\left(x-1\right)^2=0\\\left(y+2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)
Vậy \(MIN_B=0\) khi x = 1 và y = -2
a) Ta có: 3x - x2 = -(x2 - 3x + 9/4) + 9/4 = -(x - 3/2)2 + 9/4 \(\le\)9/4 \(\forall\)x
Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2
Vậy Max của 3x - x2 = 9/4 <=> x = 3/2
b) Ta có: x2 - 6x + 18 = (x2 - 6x + 9) + 9 = (x - 3)2 + 9 \(\ge\)9 \(\forall\)x
Dấu "=" xảy ra <=> x - 3 = 0 <=> x = 3
Vậy Min của x2 - 6x + 18 = 9 <=> x = 3
c) Ta có : 2x2 + 10x - 1 = 2(x2 + 5x + 25/4) - 27/2 = 2(x + 5/2)2 - 27/2 \(\ge\)-27/2 \(\forall\)x
Dấu "=" xảy ra <=> x + 5/2 = 0 <=> x = -5/2
Vậy Min của 2x2 + 10x - 1 = -27/2 <=> x = -5/2
d) Ta có : x2 + y2 - 2x + 6y + 2019
= (x2 - 2x + 1) + (y2 + 6y + 9) + 2009
= (x - 1)2 + (y + 3)2 + 2009 \(\ge\)2009 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-1=0\\y+3=0\end{cases}}\) <=> \(\hept{\begin{cases}x=1\\y=-3\end{cases}}\)
Vậy Min của x2 + y2 - 2x + 6y + 2019 = 2009 <=> x = 1 và y= -3
2.
A = xy + 2yz + 3xz = xy + xz + 2yz + 2xz = x(y + z) + 2z(y + z)
Áp dụng BĐT: (a+b)^2/4 ≥ ab dấu = khi a = b
Ta có:
(x + y + z)^2/4 ≥ x(y + z)
(x+ y +z)^2/4 ≥ z(y + z)
=> A ≤ 3(x + y + z)^2/4 = 3.36/4 = 27
=> A max = 27 xảy ra khi:
{x = y + z
{z = y + z
<=> y = 0 và x = z = 3
\(P=2x^2-\left(3-2x\right)^2\)
\(P=2x^2-9+12x-4x^2\)
\(P=-2x^2+12x-9\)
\(P=-2\left(x-3\right)^2+9\le9\)
Dấu "=" xảy ra \(\Leftrightarrow x=3\Rightarrow y=-3\)
2x+y=3
=>y=3-2x
Suy ra: P=2x2-y2=2x2-(3-2x)2=2x2-9+12x-4x2=-2x2+12x-9=-2x2+12x-18+9
=-2.(x2-6x+9)+9
=-2.(x-3)2+9 < hoặc =9
Dấu "=" xảy ra khi: x=2 =>y=3-2.2=-1
Vậy GTNN của P là 9 tại x=2;y=-1