Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Với \(n>3\Rightarrow 10a+b=2^n\vdots 2\). Mà \(10a\vdots 2\) nên suy ra \(b\vdots 2\)
Do đó \(ab\vdots 2(1)\)
----------------------------
Vì $b$ là số nguyên dương chẵn và thỏa mãn \(b< 10\Rightarrow b\in\left\{2;4;6;8\right\}\)
TH1: Nếu \(b=2\Rightarrow 2^n=10a+b=10a+2\)
Một số chính phương chia 5 chỉ có thể có dư là \(0,1,4\) mà $10a+2$ chia $5$ dư $2$ nên $n$ không thể là số chẵn.
Do đó $n$ lẻ
\(\Rightarrow 10a+2=2^n\equiv (-1)^n\equiv -1\equiv 2\pmod 3\)
\(\Rightarrow 10a\equiv 0\pmod 3\Rightarrow a\equiv 0\pmod 3\)
\(\Rightarrow ab\vdots 3\)
TH2: \(b=4\Rightarrow 2^n=10a+4\)
\(\Rightarrow 2^n-4=10a\vdots 5\) (*)
Nếu \(n\) lẻ :
\(2^n-4=2^{2k+1}-4=4^k.2-4\equiv (-1)^k.2-4\equiv -2,-6\not\equiv 0\pmod 5\)
(trái với (*))
Do đó $n$ chẵn.
\(\Rightarrow 10a+4=2^n\equiv (-1)^n\equiv 1\pmod 3\)
\(\Rightarrow 10a\equiv -3\equiv 0\pmod 3\Rightarrow a\equiv 0\pmod 3\)
Do đó \(ab\vdots 3\)
TH3: \(b=6\vdots 3\Rightarrow ab\vdots 3\)
TH4: \(b=8\Rightarrow 10a+8=2^n\)
Vì \(10a+8=5(2a+1)+3\) chia 5 dư 3 nên $10a+8$ không thể là số chính phương
Do đó \(n\) lẻ \(\Rightarrow 10a+8=2^n\equiv (-1)^n\equiv -1\pmod 3\)
\(\Rightarrow 10a\equiv -9\equiv 0\pmod 3\)
\(\Rightarrow a\equiv 0\pmod 3\Rightarrow ab\vdots 3\)
Vậy trong mọi TH thì \(ab\vdots 3(2)\)
Từ (1);(2) suy ra \(ab\vdots 6\)
Ta có đpcm.
Nếu bạn đã từng tự rủa bản thân vì quá ngu...thì đúng là bạn ngu thật. Chỉ có loại ngu mới đi chửi chính mình.
-Triết lý anh Sơn-
2c, \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge6xyz\\
\)
Á djt mẹ nãy dùng BĐT quá k nhớ ra là còn có cả trường hợp âm không dùng BĐT được...nên xử lí luôn he? :))
Nếu trong 3 số \(x,y,z\)có 1 hoặc 3 số âm, ta có \(6xyz\le0\le x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\) (ĐPCM)
Nếu trong 3 số \(x,y,z\)có 2 số âm hoặc có 3 số dương thì xét như nhau (nói âm dương là vậy chứ thiết nhất là em ghi \("\ge0"\)và \("\le0"\)cho nó chuẩn nhất ;))
Có: \(x^2\left(1+y^2\right)+y^2\left(1+z^2\right)+z^2\left(1+x^2\right)\ge2x^2y+2y^2z+2z^2x\)(1) (Bất đẳng thức Cô-si)
Ta cần chứng minh: \(2x^2y+2zy^2+2xz^2\ge6xyz\)
\(\Leftrightarrow\)\(\frac{2x^2y}{xyz}+\frac{2zy^2}{xyz}+\frac{2xz^2}{xyz}=2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge6\)(2)
Đến đây có thể làm theo 2 cách, nhưng thôi anh làm cách nhanh hơn :))
Áp dụng BĐT Cauchy-Schwarz cho 2 bộ số \(\left(\sqrt{x},\sqrt{y},\sqrt{z}\right)\)và \(\left(x,y,z\right)\)trong đó \(x,y,z\ge0\). Khi đó:
\(\frac{\left(\sqrt{x}\right)^2}{z}+\frac{\left(\sqrt{y}\right)^2}{x}+\frac{\left(\sqrt{z}\right)^2}{y}\ge\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\)
Thay vào (2) ta có:\(2\frac{x}{z}+2\frac{y}{x}+2\frac{z}{y}\ge2\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge6\)(3)
Từ (1), (2) và (3) => ĐPCM
Đến đây có lẽ chú sẽ nghĩ: Dựa vào đâu mà cha này bảo \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)???
Thì câu trả lời đây: \(\frac{\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2}{x+y+z}\ge3\)\(\Leftrightarrow\)\(\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)^2\ge3\left(x+y+z\right)\)
\(\Leftrightarrow\)\(2x+2y+2z-2\sqrt{xy}-2\sqrt{yz}-2\sqrt{zx}=\left(\sqrt{x}-\sqrt{y}\right)^2+\left(\sqrt{y}-\sqrt{z}\right)^2+\left(\sqrt{z}-\sqrt{x}\right)^2\ge0\)
m.n/(m^2+n^2 ) và m.n/2018
- Đặt (m,n)=d => m= da;n=db ; (a,b)=1
=> d^2(a^2+b^2)/(d^2(ab)) = (a^2+b^2)/(ab) => b/a ; a/b => a=b=> m=n=> ( 2n^2+2018)/n^2 =2 + 2018/n^2 => n^2/2018
=> m=n=1 ; lẻ và nguyên tố cùng nhau. vì d=1
Vẽ SH _I_ (ABCD) => H là trung điểm AD => CD _I_ (SAD)
Vẽ HK _I_ SD ( K thuộc SD) => CD _I_ HK => HK _I_ (SCD)
Vẽ AE _I_ SD ( E thuộc SD).
Ta có S(ABCD) = 2a² => SH = 3V(S.ABCD)/S(ABCD) = 3(4a³/3)/(2a²) = 2a
1/HK² = 1/SH² + 1/DH² = 1/4a² + 1/(a²/2) = 9/4a² => HK = 2a/3
Do AB//CD => AB//(SCD) => khoảng cách từ B đến (SCD) = khoảng cách từ A đến (SCD) = AE = 2HK = 4a/3
giải câu c nha
xét hiệu:A= \(a^3+b^3+c^3-a-b-c=\left(a^3-a\right)+\left(b^3-b\right)+\left(c^3-c\right)\)
Ta có:a3-a=a(a2-1)=a(a-1)(a+1) chia hết cho 6
tương tự :b3-b chia hết cho 6 và c3-c chia hết cho 6
\(\Rightarrow\)A chia hết cho 6
=> a3+b3+c3 -a-b-c chia hết cho 6
mà a3+b3+c3chia hết cho 6 nên a+b+c chia hết cho 6
k cho tớ xog tớ giải hai câu còn lại cho nha
a/ n3 - n = n(n+1)(n-1) đây là ba số nguyên liên tiếp nên chia hết cho 6
do n > 3 => 2^n >= 2^4 chia hết cho 16 => 10a + b chia hết cho 16
Ta có 2^n có thể có những tân cùng là 2; 4; 6; 8
TH1 2^n có tận cùng là 2 => n = 4k+1
=> 10a + b có tận cùng là 2 => b = 2 ( do b < 10)
ta có 2^n = 10a + 2 => 2( 2^(4k) - 1) = 10a => 2^( 4k) - 1 = 5a
do 2^(4k) - 1 chia hết cho 3 => 5a chia hết cho 3 => a chia hết cho 3
=> a.b = a.2 chia hết cho 6 (1)
TH2 2^n có tận cùng là 4 => n = 4k +2
=> 2^n = 10a + b có tận cùng là 4 => b = 4( do b <10)
=> 2^(4k +2) = 10a + 4 => 4.2^(4k) - 4 = 10a
=> 4(2^4k - 1) = 10 a
ta có 2 ^4k -1chia hết cho 3 => 10a chia hết cho 3 => a chia hết cho 3
=> a.b chia hết cho 6 (2)
Th3 2^n có tận cùng là 8 => n = 4k +3
TH 3 2^n có tận cùng là 6 => n = 4k
bằng cách làm tương tự ta luôn có a.b chia hết cho 6
tick cái nha