Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét:
2n-1; 2n ; 2n+1 là 3 số tự nhiên liên tiếp nên tồng tại một số chia hết cho 3
Lại có:
2n không chia hết cho 3(vì 2 không chia hết cho 3)
2n+1 không chia hết cho 3 (vì là số nguyên tố)
=>2n-1 phải chia hết cho 3
=>2n-1 là hợp số
\(S=1-\frac{1}{4}+1-\frac{1}{9}+1-\frac{1}{16}+...+1-\frac{1}{n^2}\)
\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)< n-1\)
\(S=n-1-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
\(>n-1-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)
\(=n-1-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(=n-1-\left(1-\frac{1}{n}\right)\)
\(=n-2+\frac{1}{n}>n-2\)
\(\Rightarrow n-2< S< n-1\)
ta có đpcm.
Bài 1: 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn) => đpcm
Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2.
Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm
Bài 4 : 1 + 2 + ... + x = 55
Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)
Tổng trên là : (x + 1) . x : 2 = 55
=> (x + 1) . x = 110 = 11 . 10
=> x = 10
Cho mình làm lại nha :
Bài 1: Không. Vì 6 số tự nhiên liên tiếp có tổng là một số lẻ, không thể là 20000 (số chẵn)
Bài 2 :n2 + n = n.(n + 1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho 2. =>
Bài 3 : aaa = 111 . a luôn chia hết cho 11, là hợp số => đpcm
Bài 4 : 1 + 2 + ... + x = 55
Số số hạng trong tổng trên là : (x - 1) + 1 = x (số hạng)
Tổng trên là : (x + 1) . x : 2 = 55
=> (x + 1) . x = 110 = 11 . 10
=> x = 10
Bài làm
Gọi 2n-1,2n,2n+1 là 3 số nguyên liên tiếp (n>2)
Ta có
2n+1 là số nguyên tố lớn hơn 3
=>2n-1 chia hết cho 3
2n không chia hết cho 3
Vì 2n-1,2n,2n+1 là 3 số nguyên liên tiếp
=> 1 trong 3 số phải chia hết cho 3
=> 2n-1 chia hết cho3 (1)
Vì n>2
=> 2n-1 > 3 (2)
Từ (1) và (2)
=> 2n-1 là hợp số
=> DPCM
P/s tham khảo nha