K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
20 tháng 10 2021

Gọi \(2021\)số đó là \(a_1,a_2,...,a_{2021}\).

Đặt \(t_1=a_1,t_2=a_1+a_2,...,t_n=a_1+a_2+...+a_n,...,t_{2021}=t_1+...+t_{2021}\).

\(t_1,...,t_{2021}\)có \(2021\)số nên có ít nhất \(2\)trong \(2021\)số trên có cùng số dư khi chia cho \(2020\).

Giả sử đó là \(t_m,t_n\)với \(m>n\).

Khi đó \(t_m-t_n\)chia hết cho \(2020\).

Ta có đpcm. 

đpcm là j ạ

Giả sử tất cả các số đã cho đều lẻ

=>Quy đồng, ta được:

\(A=\dfrac{\left(a_2\cdot a_3\cdot...\cdot a_{2022}\right)+\left(a_1\cdot a_3\cdot...\cdot a_{2021}\cdot a_{2022}\right)+...+\left(a_1\cdot a_2\cdot...\cdot a_{2021}\right)}{a_1\cdot a_2\cdot...\cdot a_{2022}}=1\)

Tử có 2022 số hạng, mẫu là số lẻ

=>A là số chẵn khác 1

=>Trái GT

=>Phải có ít nhất 1 số là số chẵn

13 tháng 3 2022

đặt s1=10001

     s2=100010001

    ....

   s2022=10001....10001 (2022 số 0001)

nếu 1 số sk nào đó trong dãy s1,s2...,s2022 chia hết cho 2021 

=> sk=10001...10001 (k số 0001) chia hết cho 2021

=>20222022...2022 chia hết cho 2021=> đpcm

nếu ko 1 số sk nào đó trong dãy s1,s2...,s2022 chia hết cho 2021 :

theo nguyên lí diriclet nên tồn tại 2 số sm,sn có cùng dư khi chia với 2021

=> sm-sn chia hết cho 2021

=>10001....000 (m-n 0001 và n 0000) chia hết cho 2021

=> 10001...10001 x  10n chia hết cho 2021 

=> 10001...10001 chia hết cho 2021

=> 20222022...2022 chia hết cho 2021

=> đpcm

2 tháng 6 2017

một số số là j vậy Thanh

2 tháng 6 2017

Là các số khác nữa nhưng nhiều số vân vân

19 tháng 6 2019

a) Giả sử không có 2 số nào bằng nhau trong các số nguyên dương đẫ cho.

Không mất tính tổng quát ta giả sử: \(a1< a2< a3< a4< ...< a100\)

Nên : \(a1\ge1;a2\ge2;a3\ge3;...;a100\ge100\)

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}\)

Mặt khác, ta có : \(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{100}< \frac{1}{1}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}=1+99.\frac{1}{2}=\frac{101}{2}\)

\(\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+...+\frac{1}{100}< \frac{1}{2}+\frac{1}{2}+\frac{1}{2}+...+\frac{1}{2}\)có 99 phân số 1/2 )

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{101}{2}\)trái với đề bài ra là \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\ge\frac{101}{2}\)

Vậy tồn tại trong 100 số đã cho ít nhất 2 số bằng nhau ( điều phải chứng minh ).

b) Giả sử trong 100 số trên chỉ tồn tại 2 số bằng nhau ( đã chứng minh 2 số bằng nhau ở phần a)

Không mất tính tổng quát, ta giả sử: 

19 tháng 6 2019

b) Làm tiếp : Giả sử a1=a2.

Nên : \(a1=a2>a3>a4>...>a100\)( áp dụng theo phần a)

\(\Rightarrow a1=a2\ge1;a3\ge2;a4\ge3;...;a100\ge99\)

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\le\frac{2}{a1}+\frac{1}{a3}+...+\frac{1}{a100}=\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}\)

Mặt khác, ta có :\(\frac{2}{1}+\frac{1}{2}+...+\frac{1}{99}< 2+\frac{1}{2}+\frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}=\frac{5}{2}+\frac{97}{3}=\frac{209}{6}\)

\(\frac{1}{3}+\frac{1}{4}+...+\frac{1}{99}< \frac{1}{3}+\frac{1}{3}+...+\frac{1}{3}\)có 97 phân số 1/3 )

\(\Rightarrow\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}< \frac{209}{6}< \frac{303}{6}=\frac{101}{2}\)trái với đề bài

Tương tự giả sử lấy bất kỳ 2 số bằng nhau khác tổng \(\frac{1}{a1}+\frac{1}{a2}+\frac{1}{a3}+...+\frac{1}{a100}\)vẫn nhỏ hơn 101/2

Vậy tồn tại trong 100 số đã cho có ít nhất 3 số bằng nhau ( điều phải chứng minh).

3 tháng 4 2020

Nếu có 2 số có cùng số dư khi chia hết cho 100 thì bài toán được giải.Giả sử không có hai số nào cùng số dư khi chia cho 100.Khi đó,có ít nhất 51 số khi chia hết cho 100 có số dư khác 50 là \(a_1,a_2,...,a_{50}\)

Đặt \(b_i=-a_i\left(1\le i\le51\right)\)

Xét 102 số : \(a_i\)và \(b_i\)

Theo nguyên tắc của Dirichlet thì tồn tại \(i\ne j\)sao cho \(a_i\equiv b_j\left(mod100\right)\)

=> \(a_i+a_j⋮100\)

7 tháng 7 2021

- Gọi các số đó là : \(x_1,x_2.....x_{2021}\)

Ta có : \(\left\{{}\begin{matrix}x_1.x_2.x_3>0\\......\\\end{matrix}\right.\)

- Để \(x_1.x_2.x_3>0\) thì \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x1>0\\x2< 0\\x3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x1< 0\\x2>0\\x3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x1>0\\x2< 0\\x3< 0\end{matrix}\right.\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x1>0\\x2>0\\x3>0\end{matrix}\right.\)

CMTT => Trường hợp thỏa mãn là : \(\left\{{}\begin{matrix}x1>0\\....\\x2021>0\end{matrix}\right.\)

Vậy ....

NV
7 tháng 7 2021

Phản chứng: gọi các số hữu tỉ là \(a_1;a_2;a_3;a_4...\)

Do tích các số đều dương nên tất cả chúng đều khác 0

Nếu tồn tại 1 số trong đó là số âm, giả sử \(a_1< 0\)

Do \(a_1.\left(a_2.a_3\right)>0\Rightarrow a_2a_3< 0\) (1)

\(\left(a_2a_3\right)a_4>0\) mà \(a_2a_3< 0\Rightarrow a_4< 0\)

\(\Rightarrow a_1a_4>0\)

\(a_1a_2a_4>0\) mà \(a_1a_4>0\Rightarrow a_2>0\) (2)

\(a_1a_3a_4>0\) mà \(a_1a_4>0\Rightarrow a_3>0\) (3)

(2); (3) \(\Rightarrow a_2a_3>0\) mâu thuẫn với (1)

Vậy điều giả sử là sai hay 2021 số đó đều dương

10 tháng 1 2021

ban oi bai de lam do

15 tháng 1 2021

Giỏi thì lm đê nguyen tien duy