Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì \(a_1,a_2,....,a_{2015}\)là các số nguyên dương, để không mất tính tổng quát ta giả sử \(a_1\le a_2\le a_3\le.....\le a_{2015}\)Suy ra
\(a_1\ge1,a_2\ge2,.......,a_{2015}\ge2015\) Vậy ta có \(A=\frac{1}{\sqrt{a_1}}+\frac{1}{\sqrt{a_2}}+..........+\frac{1}{\sqrt{a_{2015}}}\le\frac{1}{\sqrt{1}}+\frac{1}{\sqrt{2}}+.....+\frac{1}{\sqrt{2015}}=B\)
\(B=\frac{2}{\sqrt{1}+\sqrt{1}}+\frac{2}{\sqrt{2}+\sqrt{2}}+.....+\frac{2}{\sqrt{2015}+\sqrt{2015}}<1+\frac{2}{\sqrt{2}+\sqrt{1}}+\frac{2}{\sqrt{3}+\sqrt{2}}+.....+\frac{2}{\sqrt{2015}+\sqrt{2014}}=C\)
Ta có trục căn thức ở mẫu của \(C\)Ta có: \(C=2\left(\sqrt{2015}-\sqrt{2014}+\sqrt{2014}-\sqrt{2013}+.....+\sqrt{2}-\sqrt{1}\right)+1=2\left(\sqrt{2015}-\sqrt{1}\right)+1\)
Mà: \(C=2\left(\sqrt{2015}-\sqrt{1}\right)+1<89\)Trái với giả thiết Vậy tồn tại ít nhất 2 số bằng nhau trong 2015 số nguyên dương đó
trong sách nâng cao và phất triển 1 số chuyên đề toàn 9 tập 1 có đó
\(44^2 =1936 \)
\(45^2 =2025\)
Phần thừa dư do 2018 không cp : \(2018-[1936+\)\(\dfrac{(2025-1936-1 )}{2}\)] = 38 số
\(S=\dfrac{2}{1}+\dfrac{4}{2}+\dfrac{6}{3}+...+\dfrac{88}{44}+\dfrac{38}{45}=2.44+\dfrac{38}{45} \)
https://diendan.hocmai.vn/threads/toan-9-de-thi-vao-chuyen-quoc-hoc-hue.348002/ chị vào link này nhá , có câu hỏi y hệt đó