Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các kí hiệu bên dưới đều là vecto chứ ko phải đoạn thẳng:
a/ \(BB'+CC'+BA+CA=2AA'+BA+CA\)
\(=2\left(AB+BA'\right)+BA+CA=2AB+2BA'+BA+CA\)
\(=AB+CA+2BA'=CB+2BA'=CA'+A'B+2BA'\)
\(=BA'+CA'\)
b/ \(AA'+BB'+CC'=AB+BA'+BC+CB'+CA+AC'\)
\(=AB+BC+CA+BA'+CB'+AC'\)
\(=AC+CA+BA'+CB'+AC'\)
\(=BA'+CB'+AC'\)
Lời giải:
Ta chứng minh bổ đề sau:
Với tam giác $ABC$ và $G$ là trọng tâm tam giác thì :
\(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=\overrightarrow{0}\)
Thật vậy. Gọi giao điểm \(AG\cap BC=T\Rightarrow T\) là trung điểm của tam giác. \(\Rightarrow \overrightarrow{BT}+\overrightarrow{CT}=0\)
Theo tính chất đường trung tuyến:
\(\overrightarrow{GA}=2\overrightarrow{TG}\Leftrightarrow \overrightarrow{GA}+2\overrightarrow{GT}=0\) \((1)\)
Mà \(\left\{\begin{matrix} \overrightarrow{GT}=\overrightarrow{GB}+\overrightarrow{BT}\\ \overrightarrow{GT}=\overrightarrow{GC}+\overrightarrow{CT}\end{matrix}\right.\Rightarrow 2\overrightarrow{GT}=\overrightarrow{GB}+\overrightarrow{GC}\) \((2)\)
Từ \((1),(2)\Rightarrow \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\)
Áp dụng CT trên vào bài toán thì: \(\left\{\begin{matrix} \overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}=0\\ \overrightarrow{G'A'}+\overrightarrow{G'B'}+\overrightarrow{G'C'}=0\end{matrix}\right.\)
Khi đó, từ \(\left\{\begin{matrix} \overrightarrow{GG'}=\overrightarrow{GA}+\overrightarrow{AA'}+\overrightarrow{A'G'}\\ \overrightarrow{GG'}=\overrightarrow{GB}+\overrightarrow{BB'}+\overrightarrow{B'G'}\\ \overrightarrow{GG'}=\overrightarrow{GC}+\overrightarrow{CC'}+\overrightarrow{C'G'}\end{matrix}\right.\)
\(\Rightarrow 3\overrightarrow{GG'}=\overrightarrow{AA'}+\overrightarrow{BB'}+\overrightarrow{CC'}\)
Ta có đpcm.
1) Tự vẽ hình nha :3
Ta có:
\(\overrightarrow{NA}+\overrightarrow{NB}=2\overrightarrow{NM}\) (M là trung điểm AB)
Mà MN là đường trung bình của tam giác ABC \(\Rightarrow\overrightarrow{CB}=2\overrightarrow{NM}\)
\(\Rightarrow\overrightarrow{NA}+\overrightarrow{NB}=\overrightarrow{CB}\)
2) Khẳng định B đúng (điểm đầu điểm cuối của hai vecto giống nhau thì khi cộng lại sẽ mất đi)
1) đây nha : https://hoc24.vn/hoi-dap/question/637285.html
câu 2 cũng chả khác gì cả
D