K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 12 2019

a) Ta có: A = x2 + y2 - xy - 2x - 2y + 9

2A = 2x2 + 2y2 - 2xy - 4x - 4y + 18

2A = (x2 + y2 - 2xy) + (x2 - 4x + 4) + (x2 - 4y + 4) + 10

2A = (x - y)2 + (x - 2)2 + (y - 2)2 + 10 \(\ge\)10 \(\forall\)x

=>A \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\x-2=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y\\x=2\\y=2\end{cases}}\) <=> x = y = 2

Vậy MinA = 5 <=> x = y = 2

b) Ta có: 3x2 + 3y2 + 4xy + 2x - 2y + 2 = 0

=> (2x2 + 2y2 + 4xy) + (x2 + 2x + 1) + (y2 - 2y + 1) = 0

=> 2(x + y)2 + (x + 1)2 + (y - 1)2 = 0

<=> \(\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\) 

<=> \(\hept{\begin{cases}x=-y\\x=-1\\y=1\end{cases}}\)

<=> \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)

22 tháng 6 2016

\(A=\left(y^2+2y\left(x+1\right)+\left(x+1\right)^2\right)+\left(2x^2-2x+2-\left(x+1\right)^2\right)\)

\(=\left(y+x+1\right)^2+\left(x-2\right)^2-3\ge-3\)

Min A=-3 khi x=2;y=-3

22 tháng 6 2016

\(B=\left(x^2+x\left(y-3\right)+\frac{\left(y-3\right)^2}{4}\right)+\left(y^2-3y-\frac{\left(y-3\right)^2}{4}\right)\)

\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y^2-2y+1\right)-12}{4}\)

\(=\left(....\right)^2+\frac{3}{4}\left(y-1\right)^2-3\ge3\)

Min B=-3 khi y=1;x=1

24 tháng 1 2020

\(b,D=x^2+xy+y^2-3x-3y\)

Ta có: \(D+3=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)\)

Đặt: \(\left\{{}\begin{matrix}x-1=a\\y-1=b\end{matrix}\right.\)

Thì \(C+3=a^2+b^2+ab\ge0\left(\forall a,b\right)\)

\(\Rightarrow Min_C=-3\)

Dấu " = " xảy ra \(\Leftrightarrow a=b\Leftrightarrow x=y=1\)

25 tháng 4 2017

2x + 3y = 1

x = -1

y = 1

A= -12 +3.12

A= -1 + 3

A = 2

25 tháng 4 2017

Với những bài thế này, chúng ta sẽ tính x theo y hoặc y theo x rồi thay vào biểu thức.

Ta có : \(3y=1-2x\)

\(\Leftrightarrow y=\frac{1-2x}{3}\)

\(\Leftrightarrow3y^2=3.\frac{\left(1-2x\right)^2}{3^2}=\frac{1-4x+4x^2}{3}\)

\(\Leftrightarrow A=3y^2+x^2=x^2+\frac{4x^2-4x+1}{3}=\frac{3x^2+4x^2-4x+1}{3}\)

\(=\frac{7x^2-2.7.\frac{2}{7}x+1}{3}=\frac{7\left(x^2-2.\frac{2}{7}x+\frac{4}{49}\right)+1-7.\frac{4}{49}}{3}\)

\(=\frac{7\left(x-\frac{2}{7}\right)^2+\frac{3}{7}}{3}\ge\frac{0+\frac{3}{7}}{3}=\frac{1}{7}\)

Dấu bằng xảy ra \(\Leftrightarrow x=\frac{2}{7}\) thì y=....

Vậy....

2 tháng 10 2017

có ai trả lời không?

20 tháng 8 2016

Ta có 3x2+y2+2xy+4=7x+3y

<=> (x+ 2xy + y) - 3(x + y)  + 2(x- 2x +1) + 2 = 0 

<=> P- 3P + 9/4 + 2(x - 1)- 1/4 = 0

<=> (P - 3/2)= 1/4 - 2(x - 1)2

<=> P - 3/2 = 1/4 - 2(x - 1) hoặc P - 3/2 = 2(x - 1)- 1/4

Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha

4 tháng 12 2017

Ta có 3x
2+y
2+2xy+4=7x+3y
<=> (x
2 + 2xy + y
2
) - 3(x + y) + 2(x
2
- 2x +1) + 2 = 0
<=> P
2
- 3P + 9/4 + 2(x - 1)2
- 1/4 = 0
<=> (P - 3/2)2 = 1/4 - 2(x - 1)2
<=> P - 3/2 = 1/4 - 2(x - 1)2 hoặc P - 3/2 = 2(x - 1)2
- 1/4
Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha

chúc cậu hok tốt @_@