Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: A = x2 + y2 - xy - 2x - 2y + 9
2A = 2x2 + 2y2 - 2xy - 4x - 4y + 18
2A = (x2 + y2 - 2xy) + (x2 - 4x + 4) + (x2 - 4y + 4) + 10
2A = (x - y)2 + (x - 2)2 + (y - 2)2 + 10 \(\ge\)10 \(\forall\)x
=>A \(\ge\)5 \(\forall\)x
Dấu "=" xảy ra <=> \(\hept{\begin{cases}x-y=0\\x-2=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=y\\x=2\\y=2\end{cases}}\) <=> x = y = 2
Vậy MinA = 5 <=> x = y = 2
b) Ta có: 3x2 + 3y2 + 4xy + 2x - 2y + 2 = 0
=> (2x2 + 2y2 + 4xy) + (x2 + 2x + 1) + (y2 - 2y + 1) = 0
=> 2(x + y)2 + (x + 1)2 + (y - 1)2 = 0
<=> \(\hept{\begin{cases}x+y=0\\x+1=0\\y-1=0\end{cases}}\)
<=> \(\hept{\begin{cases}x=-y\\x=-1\\y=1\end{cases}}\)
<=> \(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
\(A=\left(y^2+2y\left(x+1\right)+\left(x+1\right)^2\right)+\left(2x^2-2x+2-\left(x+1\right)^2\right)\)
\(=\left(y+x+1\right)^2+\left(x-2\right)^2-3\ge-3\)
Min A=-3 khi x=2;y=-3
\(B=\left(x^2+x\left(y-3\right)+\frac{\left(y-3\right)^2}{4}\right)+\left(y^2-3y-\frac{\left(y-3\right)^2}{4}\right)\)
\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y^2-2y+1\right)-12}{4}\)
\(=\left(....\right)^2+\frac{3}{4}\left(y-1\right)^2-3\ge3\)
Min B=-3 khi y=1;x=1
\(b,D=x^2+xy+y^2-3x-3y\)
Ta có: \(D+3=\left(x-1\right)^2+\left(y-1\right)^2+\left(x-1\right)\left(y-1\right)\)
Đặt: \(\left\{{}\begin{matrix}x-1=a\\y-1=b\end{matrix}\right.\)
Thì \(C+3=a^2+b^2+ab\ge0\left(\forall a,b\right)\)
\(\Rightarrow Min_C=-3\)
Dấu " = " xảy ra \(\Leftrightarrow a=b\Leftrightarrow x=y=1\)
Với những bài thế này, chúng ta sẽ tính x theo y hoặc y theo x rồi thay vào biểu thức.
Ta có : \(3y=1-2x\)
\(\Leftrightarrow y=\frac{1-2x}{3}\)
\(\Leftrightarrow3y^2=3.\frac{\left(1-2x\right)^2}{3^2}=\frac{1-4x+4x^2}{3}\)
\(\Leftrightarrow A=3y^2+x^2=x^2+\frac{4x^2-4x+1}{3}=\frac{3x^2+4x^2-4x+1}{3}\)
\(=\frac{7x^2-2.7.\frac{2}{7}x+1}{3}=\frac{7\left(x^2-2.\frac{2}{7}x+\frac{4}{49}\right)+1-7.\frac{4}{49}}{3}\)
\(=\frac{7\left(x-\frac{2}{7}\right)^2+\frac{3}{7}}{3}\ge\frac{0+\frac{3}{7}}{3}=\frac{1}{7}\)
Dấu bằng xảy ra \(\Leftrightarrow x=\frac{2}{7}\) thì y=....
Vậy....
Ta có 3x2+y2+2xy+4=7x+3y
<=> (x2 + 2xy + y2 ) - 3(x + y) + 2(x2 - 2x +1) + 2 = 0
<=> P2 - 3P + 9/4 + 2(x - 1)2 - 1/4 = 0
<=> (P - 3/2)2 = 1/4 - 2(x - 1)2
<=> P - 3/2 = 1/4 - 2(x - 1)2 hoặc P - 3/2 = 2(x - 1)2 - 1/4
Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha
Ta có 3x
2+y
2+2xy+4=7x+3y
<=> (x
2 + 2xy + y
2
) - 3(x + y) + 2(x
2
- 2x +1) + 2 = 0
<=> P
2
- 3P + 9/4 + 2(x - 1)2
- 1/4 = 0
<=> (P - 3/2)2 = 1/4 - 2(x - 1)2
<=> P - 3/2 = 1/4 - 2(x - 1)2 hoặc P - 3/2 = 2(x - 1)2
- 1/4
Tương ứng với mỗi cái ta sẽ có GTLN, GTNN phần còn lại bạn giải nha
chúc cậu hok tốt @_@