Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thầy nói đề sai rồi mà
phải là cm ƯCLN của a và b ko lớn hơn \(\sqrt{m+n}\)
Gọi \(gcd\left(m;n\right)=d\Rightarrow m=ad;n=bd\left(a,b\inℕ^∗\right)\) và \(\left(m;n\right)=1\)
Ta có:
\(\frac{m+1}{n}+\frac{n+1}{m}=\frac{m^2+m+n^2+n}{mn}=\frac{\left(a^2+b^2\right)d+\left(a+b\right)}{abd}\)
\(\Rightarrow a+b⋮d\Rightarrow a+b\ge d\Rightarrow d\le\sqrt{d\left(a+b\right)}=\sqrt{m+n}\)
Vậy ta có đpcm
Ta có: \(\frac{p}{m-n}=\frac{m+n}{p}\)
Theo tính chất tỉ lệ thức: \(p^2=\left(m-n\right)\left(m+n\right)=m^2-n^2\)
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
. . . . . . . . . . . p. . . . . . .m + n
Thỏa mãn ————– = ———– <=> p² = ( m – 1 )( m + n )
. . . . . . . . . .m – 1. . . . . . .p
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p²
Chú ý : m – 1< m + n ( * )
Do p là số nguyên tố nên p² chỉ có các ước nguyên dương là 1, p và p² ( ** )
Từ ( * ) và ( ** ) ta có m – 1 = 1 và m + n = p². Khi đó m = 2 và tất nhiên 2 + n = p² .
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
Thỏa mãn \(\frac{p}{m-1}=\frac{m+n}{p}\) <=> p2 = ( m – 1 ).( m + n )
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2
Chú ý : m – 1< m + n (1)
Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 (2)
Từ (1) và (2) ta có m – 1 = 1 và m + n = p2. Khi đó m = 2 và tất nhiên 2 + n = p2
Vậy p2 = n + 2 (Đpcm).
m và n là số tự nhiên => m , n ≥ 0
p là số nguyên tố
Thỏa mãn p/m−1 =m+n/p <=> p2 = ( m – 1 )( m + n )
Do ( m – 1 ) và ( m + n ) là các ước nguyên dương của p2
Chú ý : m – 1< m + n ( 1 )
Do p là số nguyên tố nên p2 chỉ có các ước nguyên dương là 1, p và p2 ( 2 )
Từ ( 1 ) và ( 2 ) ta có m – 1 = 1 và m + n = p2.
Khi đó m = 2 và tất nhiên 2 + n = p2
Do đó A = p2 - n = 2
giả sử d = ƯCLN ( m , n ) với d \(\ge\) 1 thì m \(⋮\)d và n \(⋮\) d
suy ra : 3m \(⋮\) d , 2n \(⋮\) d
suy ra 3m - 2n = 1 \(⋮\) d
Bởi vì d \(\ge\)1 mà 1 d thì d = 1,
suy ra m và n nguyên tố cùng nhau