Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{10x}{5}+\frac{5y}{5}+\frac{30}{x}+\frac{5}{y}\)
\(=\frac{6x}{5}+\frac{4x}{5}+\frac{y}{5}+\frac{4y}{5}+\frac{30}{x}+\frac{5}{y}\)
\(=\left(\frac{6x}{5}+\frac{30}{x}\right)+\left(\frac{4x}{5}+\frac{4y}{5}\right)+\left(\frac{y}{5}+\frac{5}{y}\right)\)
Áp dụng bất đẳng thức cô-si cho hai số không âm
\(\frac{6x}{5}+\frac{30}{x}\ge2\sqrt{\frac{6x}{5}.\frac{30}{x}}=2\sqrt{36}=2.6=12\) (1)
\(\frac{y}{5}+\frac{5}{y}\ge2\sqrt{\frac{y}{5}.\frac{5}{y}}=2\) (2)
Theo đề \(x+y\ge10\) suy ra
\(\frac{4x}{5}+\frac{4y}{5}=\frac{4\left(x+y\right)}{5}\ge\frac{4.10}{5}=8\) (2)
Cộng (1); (2) ; (3) vế theo vế ta được:
\(\frac{6x}{5}+\frac{30}{x}+\frac{y}{5}+\frac{5}{y}+\frac{4x}{5}+\frac{4y}{5}\ge12+2+8=22\)
Dấu "=" xảy ra <=> \(\hept{\begin{cases}\frac{6x}{5}=\frac{30}{x}\\\frac{y}{5}=\frac{5}{y}\end{cases}\Rightarrow\hept{\begin{cases}x^2=25\\y^2=25\end{cases}}}\)
Vì x;y dương nên (x;y) = (5;5)
\(P=2x+y+\frac{30}{x}+\frac{5}{y}\)
\(\Leftrightarrow P=0,8\left(x+y\right)+\left(1,2x+\frac{30}{x}\right)+\left(0,2y+\frac{5}{y}\right)\)
Áp dụng BĐT AM-GM ta có:
\(P\ge0,8\left(x+y\right)+2.\sqrt{1,2x.\frac{30}{x}}+2.\sqrt{0,2y.\frac{5}{y}}=8+12+2=22\)
Dấu " = " xảy ra <=> x=y=5
Vậy \(P_{min}=22\Leftrightarrow x=y=5\)
Ta có :
\(Q=\left(2x^2+\dfrac{2}{x^2}\right)+\left(3y^2+\dfrac{3}{y^2}\right)+\left(\dfrac{4}{x^2}+\dfrac{5}{y^2}\right)\ge2.2+2.3+9=19\)
Dấu "=" xảy ra khi x=y=1
\(P=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)
\(=\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)+\left(\dfrac{4x}{5}+\dfrac{4y}{5}\right)\)
\(\ge2.6+2+\dfrac{4}{5}.10=22\)
Vậy GTNN là P = 22 khi x = y = 5
Cho x,y,z là các số dương thỏa mãn: \(x+y\ge10\). Tìm GTNN của \(A=2x+y+\dfrac{30}{x}+\dfrac{5}{y}\)
<=> A = (x+y) + ( 5/x + 5/y) +( 25/x + x)
Xét:
+) x+y >/ 10
+) 5/x + 5/y = 5(1/x+1/y) >/ 5.4/x+y = 2 <=> x=y
+) 25/x + x >/ 2. căn 25/x.x =10
=> A >/ 10+2+10 = 22 <=> (x;y)= (5;5).
\(A=\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)+\dfrac{4}{5}\left(x+y\right)\)
\(A\ge2\sqrt{\dfrac{180x}{5x}}+2\sqrt{\dfrac{5y}{5y}}+\dfrac{4}{5}.10=22\)
\(A_{min}=22\) khi \(x=y=5\)
\(Q=2x^2+\dfrac{6}{x^2}+3y^2+\dfrac{8}{y^2}=\left(2x^2+\dfrac{2}{x^2}\right)+\left(3y^2+\dfrac{3}{y^2}\right)+\left(\dfrac{4}{x^2}+\dfrac{5}{y^2}\right)\)
\(\ge2.2+2.3+9=19\)
Dấu = xảy ra khi \(x=y=1\)
Ta có : a-\(\dfrac{1}{a}-2=a^2-2a+1=\left(a-1\right)^2\ge0\)
\(\Rightarrow a-\dfrac{1}{a}\ge2\)
Q(x)=2x2+\(\dfrac{2}{x^2}+3y^2+\dfrac{3}{y^2}+\dfrac{4}{x^2}+\dfrac{5}{y^2}\)
=2(\(x^2+\dfrac{1}{x^2}\)) +3(\(y^2+\dfrac{1}{y^2}\))+(\(\dfrac{4}{x^2}+\dfrac{5}{y^2}\))
\(\ge2.2+3.2+9=19\)
Dấu = xảy ra khi x=y=1
\(P=\dfrac{4}{5}\left(x+y\right)+\left(\dfrac{6x}{5}+\dfrac{30}{x}\right)+\left(\dfrac{y}{5}+\dfrac{5}{y}\right)\ge\dfrac{4}{5}.10+2\sqrt{\dfrac{180x}{5x}}+2\sqrt{\dfrac{5y}{5y}}=22\)
\(P_{min}=22\) khi \(x=y=5\)