Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề thi học kỳ 1 trường Ams
**Min
Từ \(a^2+b^2+c^2=1\Rightarrow a^2\le1;b^2\le1;c^2\le1\)
\(\Rightarrow a\le1;b\le1;c\le1\Rightarrow a^2\le a;b^2\le b;c^2\le c\)
Khi đó:
\(\sqrt{a+b^2}\ge\sqrt{a^2+b^2};\sqrt{b+c^2}\ge\sqrt{b^2+c^2};\sqrt{c+a^2}\ge\sqrt{c^2+a^2}\)
\(\Rightarrow P\ge\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\)
\(\Rightarrow P\ge\sqrt{1-c^2}+\sqrt{1-a^2}+\sqrt{1-b^2}\)
Ta có:
\(\sqrt{1-c^2}\ge1-c^2\Leftrightarrow1-c^2\ge1-2c^2+c^4\Leftrightarrow c^2\left(1-c^2\right)\ge0\left(true!!!\right)\)
Tương tự cộng lại:
\(P\ge3-\left(a^2+b^2+c^2\right)=2\)
dấu "=" xảy ra tại \(a=b=0;c=1\) and hoán vị.
**Max
Có BĐT phụ sau:\(\sqrt{a}+\sqrt{b}+\sqrt{c}\le\sqrt{3\left(a+b+c\right)}\left(ezprove\right)\)
Áp dụng:
\(\sqrt{a+b^2}+\sqrt{b+c^2}+\sqrt{c+a^2}\)
\(\le\sqrt{3\left(a+b+c+a^2+b^2+c^2\right)}\)
\(=\sqrt{3\left(a+b+c\right)+3}\)
\(\le\sqrt{3\left(\sqrt{3\left(a^2+b^2+c^2\right)}+3\right)}=\sqrt{3\cdot\sqrt{3}+3}\)
Dấu "=" xảy ra tại \(a=b=c=\pm\frac{1}{\sqrt{3}}\)
\(P^2=\left(\sqrt{4a+3}+\sqrt{4b+3}+\sqrt{4c+3}\right)^2\)
\(\le\left(1^2+1^2+1^2\right)\left(4a+3+4b+3+3c+3\right)\)
\(=63\)
\(\Rightarrow P\le\sqrt{63}=3\sqrt{7}\).
Dấu \(=\)khi \(\hept{\begin{cases}4a+3=4b+3=4c+3\\a+b+c=3\end{cases}}\Leftrightarrow a=b=c=1\).
Ta có: \(\left(a-b\right)^2\ge0\Leftrightarrow a^2-2ab+b^2\ge0\Leftrightarrow a^2+b^2\ge2ab\)
\(\Rightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}\Leftrightarrow\orbr{\begin{cases}a^2+2ab+b^2\ge4ab\\2\left(a^2+b^2\right)\ge a^2+2ab+b^2\end{cases}}}\)
\(\Leftrightarrow\orbr{\begin{cases}\left(a+b\right)^2\ge4ab\left(1\right)\\\left(a+b\right)^2\le2\left(a^2+b^2\right)\left(2\right)\end{cases}}\)
Theo đề bài:
\(a+b+3ab=1\)
\(\Leftrightarrow4\left(a+b\right)+12ab=4\)
\(\Leftrightarrow4\left(a+b\right)+3\left(a+b\right)^2\ge4\left(theo\left(1\right)\right)\)
\(\Leftrightarrow3\left(a+b\right)^2+4\left(a+b\right)-4\ge0\)
\(\Leftrightarrow\left(a+b+2\right)\left[3\left(a+b\right)-2\right]\ge0\)
\(\Leftrightarrow3\left(a+b\right)-2\ge0\left(a,b>0\Rightarrow a+b+2>0\right)\)
\(\Leftrightarrow a+b\ge\frac{2}{3}\)
`\(\Rightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\ge\frac{4}{9}\left(theo\left(2\right)\right)\)
Áp dụng các kết quả trên, ta có:
\(\left(\sqrt{1-a^2}+\sqrt{1-b^2}\right)^2\le2\left(1-a^2+1-b^2\right)\)\(=4-2\left(a^2+b^2\right)\le4-\frac{4}{9}=\frac{32}{9}\)
\(\Rightarrow\sqrt{1-a^2}+\sqrt{1-b^2}\le\frac{4\sqrt{2}}{3}\)
Ta có: \(\frac{3ab}{a+b}=\frac{1-\left(a+b\right)}{a+b}=\frac{1}{a+b}-1\le\frac{1}{\frac{2}{3}}-1=\frac{1}{2}\)
\(\Rightarrow A\le\frac{4\sqrt{2}}{3}+\frac{1}{2}\)
Dấu '=' xảy ra <=> \(\hept{\begin{cases}a=b\\a+b+3ab=1\end{cases}\Leftrightarrow\hept{\begin{cases}a=b\\3a^2+2a-1=0\end{cases}\Leftrightarrow}a=b=\frac{1}{3}\left(a,b>0\right)}\)
Vậy max A là \(\frac{4\sqrt{2}}{3}+\frac{1}{2}\Leftrightarrow a=b=\frac{1}{3}\)
\(a+b+c\le\sqrt{3}\)
\(\Rightarrow ab+bc+ac\le\frac{\left(a+b+c\right)^2}{3}=1\)
Thay vào M ta có: \(M\le\frac{a}{\sqrt{a^2+ab+bc+ac}}+\frac{b}{\sqrt{b^2+ab+bc+ac}}+\frac{c}{\sqrt{c^2+ab+bc+ac}}\)
\(=\frac{a}{\sqrt{\left(a+b\right)\left(a+c\right)}}+\frac{b}{\sqrt{\left(b+c\right)\left(b+c\right)}}+\frac{c}{\sqrt{\left(c+a\right)\left(c+b\right)}}\)
Xét: \(\left(\frac{a}{a+b}+\frac{a}{a+c}\right)^2\ge\frac{4a^2}{\left(a+b\right)\left(a+c\right)}\Leftrightarrow\frac{a}{a+b}+\frac{a}{a+c}\ge\frac{2a}{\sqrt{\left(a+b\right)\left(a+c\right)}}\)
Tương tự rồi cộng vế vs vế ta được: \(M\le\frac{\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{a+c}{a+c}}{2}=\frac{3}{2}\)
Dấu = xảy ra khi a=b=c = \(\frac{\sqrt{3}}{3}\)
Đặt \(x=\sqrt{a^2+b^2+c^2}\)
Có: \(x=\sqrt{a^2+b^2+c^2}\ge\sqrt{\frac{1}{3}\left(a+b+c\right)^2}=\sqrt{3}\)
\(x=\sqrt{a^2+b^2+c^2}=\sqrt{\left(a+b+c\right)^2-2\left(ab+bc+ca\right)}\le\sqrt{\left(a+b+c\right)^2}=3\)
\(\Rightarrow\sqrt{3}\le x\le3\)
Khi đó, có: \(P=\sqrt{a^2+b^2+c^2}+\frac{1}{a^2+b^2+c^2}=x+\frac{1}{x^2}\)
Ta chứng minh \(P=x+\frac{1}{x^2}\le\frac{28}{9}\)
BĐT \(\Leftrightarrow9x^3-28x^2+9\le0\)
\(\Leftrightarrow\left(x-3\right)\left(9x^2-x-3\right)\le0\)(Luôn đúng vì \(\sqrt{3}\le x\le3\))
Vậy \(maxP=\frac{28}{9}\Leftrightarrow x=3\Leftrightarrow\left(a,b,c\right)\in\left\{\left(0;0;3\right)\right\}\)và các hoán vị.
\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
áp dụng bunhia - cốpxki
\(P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\le\left(1+1+1\right)\left(a+b+b+c+c+a\right)\)
\(=6\left(a+b+c\right)\)
\(=6.2021=12126< =>P=\sqrt{12126}\)
vậy MAX P=\(\sqrt{12126}\)
\(P=\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\)
\(\Rightarrow P^2=\left(\sqrt{a+b}+\sqrt{b+c}+\sqrt{c+a}\right)^2\)
Áp dụng BĐT Bunyakovsky ta có:
\(P^2\le\left(1^2+1^2+1^2\right)\left(a+b+b+c+c+a\right)=6\left(a+b+c\right)=6\cdot2021\)
\(\Rightarrow P\le\sqrt{6\cdot2021}=\sqrt{12126}\)
Dấu "=" xảy ra khi: \(a=b=c=\frac{2021}{3}\)
Vậy \(Max\left(P\right)=\sqrt{12126}\Leftrightarrow a=b=c=\frac{2021}{3}\)
Áp dụng bất đẳng thức Cosi 6 số ta có :
\(a^3+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}+\frac{1}{2}\geq 6\sqrt[6]{a^3.(\frac{1}{2})^5}=3\sqrt[6]{2}\sqrt{a}\)
Tương tự suy ra :
\(a^3+b^3+5 \geq 3\sqrt[6]{2}.A \\ \Rightarrow A \leq \sqrt[6]{32}\)
Dấu = xảy ra khi \(a=b=\frac{\sqrt[3]{4}}{2}\)
=)) Cosi sao dùng cho số thực nhờ =))