K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 10 2020

Bài 4: Áp dụng bất đẳng thức AM - GM, ta có: \(P=\text{​​}\Sigma_{cyc}a\sqrt{b^3+1}=\Sigma_{cyc}a\sqrt{\left(b+1\right)\left(b^2-b+1\right)}\le\Sigma_{cyc}a.\frac{\left(b+1\right)+\left(b^2-b+1\right)}{2}=\Sigma_{cyc}\frac{ab^2+2a}{2}=\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\)Giả sử b là số nằm giữa a và c thì \(\left(b-a\right)\left(b-c\right)\le0\Rightarrow b^2+ac\le ab+bc\)\(\Leftrightarrow ab^2+bc^2+ca^2\le a^2b+abc+bc^2\le a^2b+2abc+bc^2=b\left(a+c\right)^2=b\left(3-b\right)^2\)

Ta sẽ chứng minh: \(b\left(3-b\right)^2\le4\)(*)

Thật vậy: (*)\(\Leftrightarrow\left(b-4\right)\left(b-1\right)^2\le0\)(đúng với mọi \(b\in[0;3]\))

Từ đó suy ra \(\frac{1}{2}\left(ab^2+bc^2+ca^2\right)+3\le\frac{1}{2}.4+3=5\)

Đẳng thức xảy ra khi a = 2; b = 1; c = 0 và các hoán vị

26 tháng 10 2020

Bài 1: Đặt \(a=xc,b=yc\left(x,y>0\right)\)thì điều kiện giả thiết trở thành \(\left(x+1\right)\left(y+1\right)=4\)

Khi đó  \(P=\frac{x}{y+3}+\frac{y}{x+3}+\frac{xy}{x+y}=\frac{x^2+y^2+3\left(x+y\right)}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)\(=\frac{\left(x+y\right)^2+3\left(x+y\right)-2xy}{xy+3\left(x+y\right)+9}+\frac{xy}{x+y}\)

Có: \(\left(x+1\right)\left(y+1\right)=4\Rightarrow xy=3-\left(x+y\right)\)

Đặt \(t=x+y\left(0< t< 3\right)\Rightarrow xy=3-t\le\frac{\left(x+y\right)^2}{4}=\frac{t^2}{4}\Rightarrow t\ge2\)(do t > 0)

Lúc đó \(P=\frac{t^2+3t-2\left(3-t\right)}{3-t+3t+9}+\frac{3-t}{t}=\frac{t}{2}+\frac{3}{t}-\frac{3}{2}\ge2\sqrt{\frac{t}{2}.\frac{3}{t}}-\frac{3}{2}=\sqrt{6}-\frac{3}{2}\)với \(2\le t< 3\)

Vậy \(MinP=\sqrt{6}-\frac{3}{2}\)đạt được khi \(t=\sqrt{6}\)hay (x; y) là nghiệm của hệ \(\hept{\begin{cases}x+y=\sqrt{6}\\xy=3-\sqrt{6}\end{cases}}\)

Ta lại có \(P=\frac{t^2-3t+6}{2t}=\frac{\left(t-2\right)\left(t-3\right)}{2t}+1\le1\)(do \(2\le t< 3\))

Vậy \(MaxP=1\)đạt được khi t = 2 hay x = y = 1

11 tháng 11 2018

\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{abc}\Rightarrow\frac{ab+bc+ca}{abc}=\frac{1}{abc}\Rightarrow ab+bc+ca=1\)

Khi đó: \(\left(1+a^2\right)\left(1+b^2\right)\left(1+c^2\right)=\left[ab+bc+ca+a^2\right]\left[ab+bc+ca+b^2\right]\left[ab+bc+ca+c^2\right]\)

\(=\left[a\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+b\right)+c\left(a+b\right)\right]\left[b\left(a+c\right)+c\left(a+c\right)\right]\)

\(=\left(a+b\right)^2\left(a+c\right)^2\left(b+c\right)^2\)là số chính phương.

23 tháng 5 2021

Ta có:

sigma \(\frac{ab}{3a+4b+5c}=\) sigma \(\frac{2ab}{5\left(a+b+2c\right)+\left(a+3b\right)}\le\frac{2}{36}\left(sigma\frac{5ab}{a+b+2c}+sigma\frac{ab}{a+3b}\right)\)

Ta đi chứng minh: \(sigma\frac{ab}{a+b+2c}\le\frac{9}{4}\)

có: \(sigma\frac{ab}{a+b+2c}\le\frac{1}{4}\left(sigma\frac{ab}{c+a}+sigma\frac{ab}{b+c}\right)=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

BĐT trên đúng nếu: \(sigma\frac{ab}{a+3b}\le\frac{9}{4}\)

Ta thấy: \(sigma\frac{ab}{a+3b}\le\frac{1}{16}\left(sigma\frac{ab}{a}+sigma\frac{3ab}{b}\right)=\frac{1}{16}\)( sigma \(b+sigma3a\)\(=\frac{1}{4}\left(a+b+c\right)=\frac{9}{4}\)

\(\Leftrightarrow sigma\frac{ab}{3a+4b+5c}\le\frac{1}{18}\left(5.\frac{9}{4}+\frac{9}{4}\right)=\frac{3}{4}\)(1)

MÀ: \(\frac{1}{\sqrt{ab\left(a+2c\right)\left(b+2c\right)}}=\frac{2}{2\sqrt{\left(ab+2bc\right)\left(ab+2ca\right)}}\ge\frac{2}{2\left(ab+bc+ca\right)}\)

\(=\frac{3}{3\left(ab+bc+ca\right)}\ge\frac{3}{\left(a+b+c\right)^2}=\frac{3}{9^2}=\frac{1}{27}\)(2)

Từ (1) và (2) \(\Rightarrow T\le\frac{3}{4}-\frac{1}{27}=\frac{77}{108}\)

Vậy GTLN của biểu thức T là 77/108 <=> a=b=c=3

24 tháng 5 2018

Ta có :\(a^2+b=b^2+c\Rightarrow\left(a-b\right)\left(a+b\right)=c-b\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-\left(a-b\right)=c-b-a+b\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-1\right)=c-a\)

Tương tự \(\hept{\begin{cases}\left(b-c\right)\left(b+c-1\right)=a-b\\\left(a-c\right)\left(a+c-1\right)=c-b\end{cases}}\)

Nhận vế với vế của các đẳng thức trên ta được :

\(\left(a-b\right)\left(b-c\right)\left(c-a\right)\left(a+b-1\right)\left(b+c-1\right)\left(a+c-1\right)=\left(a-b\right)\left(b-c\right)\left(c-a\right)\)

\(\Rightarrow\left(a+b-1\right)\left(b+c-1\right)\left(a+c-1\right)=1\)

11 tháng 6 2019

a + b + c= 1 \(\Rightarrow\)1 - a = b + c > 0

Tương tự : 1 - b > 0 ; 1 - c > 0

Mà 1 + a = 1 + ( 1 - b - c ) = ( 1- b ) + ( 1 - c ) \(\ge\)\(2\sqrt{\left(1-b\right)\left(1-c\right)}\)

Tương tự : \(1+b\ge2\sqrt{\left(1-a\right)\left(1-c\right)}\)\(1+c\ge2\sqrt{\left(1-a\right)\left(1-b\right)}\)

\(\Rightarrow\left(1+a\right)\left(1+b\right)\left(1+c\right)\ge8\sqrt{\left(1-a\right)^2\left(1-b\right)^2\left(1-c\right)^2}=8\left(1-a\right)\left(1-b\right)\left(1-c\right)\)

\(\Rightarrow A=\frac{\left(1+a\right)\left(1+b\right)\left(1+c\right)}{\left(1-a\right)\left(1-b\right)\left(1-c\right)}\ge8\)

Dấu " = : xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

Vậy GTNN của A là 8 \(\Leftrightarrow a=b=c=\frac{1}{3}\)

12 tháng 6 2019

Cách khác:

\(A=\frac{\left[\left(a+b\right)+\left(a+c\right)\right]\left[\left(b+c\right)+\left(b+a\right)\right]\left[\left(c+a\right)+\left(c+b\right)\right]}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\)

Áp dụng BĐT Cô si cho 2 số ta được:

\(A\ge\frac{8\sqrt{\left(a+b\right)^2\left(b+c\right)^2\left(c+a\right)^2}}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}=8\)

"=" <=> a = b = c = 1/3

Kết luận..

24 tháng 7 2020

đại khái giống Ngọc thôi, sửa 1 số lỗi 

\(P=1-2\left(ab^2+bc^2+ca^2\right)-2abc\)

\(b=mid\left\{a;b;c\right\}\)\(\Rightarrow\)\(ab^2+ca^2\le a^2b+abc\)

\(\Rightarrow\)\(P\le1-2a^2b-2bc^2-4abc=1-2b\left(c+a\right)^2\le1-8\left(\frac{b+\frac{c+a}{2}+\frac{c+a}{2}}{3}\right)^3=\frac{19}{27}\)

24 tháng 7 2020

ta có ab+bc+ca=(a+b+c)(ab+bc+ca)=(a2b+b2c+c2a)+(ab2+bc2+ca2)+3abc

=> a2+b2+c2=(a+b+c)2-2(ab+bc+ca)=1-2(ab+bc+ca)=1-2[(a2b+b2c+c2a)+(ab2+bc2+ca2)+3abc]

do đó P=2(a2b+b2c+c2a)+1-2[(a2b+b2c+c2a)+(ab2+bc2+ca2)+3abc]+4abc

=1-2(ab2+bc2+ca2)

không mất tính tổng quát giả sử a =<b=<c. suy ra

a(a-b)(b-c) >=0 => (a2-a)(b-c) >=0

=> a2b-a2c-ab2+abc >=0 => ab2+ca2=< a2b+abc

do đó ab2+bc2+ca2+abc=(ab2+ca2)+bc2+abc =< (a2b+abc)+b2c+abc=b(a+c)2

với các số dương x,y,z ta luôn có: \(x+y+z-3\sqrt[3]{xyz}=\frac{1}{2}\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\left[\left(\sqrt[3]{x}-\sqrt[3]{y}\right)^2+\left(\sqrt[3]{y}-\sqrt[3]{z}\right)^2+\left(\sqrt[3]{z}-\sqrt[3]{x}\right)^2\right]\ge0\)

=> \(x+y+z\ge3\sqrt[3]{xyz}\Rightarrow xyz\le\left(\frac{x+y+z}{3}\right)^2\)(*)

dấu "=" xảy ra khi và chỉ khi x=y=z

áp dụng bđt (*) ta có:

\(b\left(a+c\right)^2=ab\left(\frac{a+c}{2}\right)\left(\frac{a+c}{2}\right)\le4\left(\frac{b+\frac{a+c}{2}+\frac{a+c}{2}}{3}\right)^3=4\left(\frac{a+b+c}{3}\right)^3=\frac{4}{27}\)

=> P=1-2(ab2+bc2+ca2+abc) >= 1-2b(a+c)2 >= 1-2.4/27=19/27

vậy minP=19/27 khi x=y=z=1/3