K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 8 2016

Ta có : N=321.125-94

=(322-1).125-94

=322.125-125-94

=322.(125-1)-219

=322.124+322-219

=322.124+103=M

Hay M=N

7 tháng 8 2016

MÌNH KHG HIEU CACH CUA BẠN Uzumaki Naruto

Hiệu mới là :

48 - 3 = 45 

Hiệu số phần bằng nhau là :

6 - 1 = 5 ( phần )

Số m khi giảm đi 3 là :

45 : 5 x 6 = 54

Số m là :

54 + 3 = 57

Số n là :

57 - 48 = 9

Đáp số : m = 57

n=9

18 tháng 7 2016

m = 57

n = 9

Bài 1: 

a: Để A là phân số thì n+1<>0

hay n<>-1

b: Để A là số nguyên thì \(n+1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{0;-2;4;-6\right\}\)

14 tháng 12 2015

tick cho mk thoát khỏi âm đi

14 tháng 12 2015

Ta có: 7n+10 và 5n+7 nguyên tố cùng nhau

Gọi ước chung của 2 số này là d

=> 7n+10 chia hết cho d

=> 5n+7 chia hết cho d

=> 5(7n+10) chia hết cho d

=> 7(5n+7) chia hết cho d

=> 35n+ 50 chia hết cho d

=> 35n+ 49 chia hết cho d

=> 35n+50 - 35n+49 chia hết cho d

=> 1 chia hết cho d

=> d thuộc U( 1)

=>  d=1

=> Nguyên tố cùng nhau

Tick mình nha các bạn 

9 tháng 10 2015

a) Gọi d = ƯC(n + 3; 2n + 5) 

=> n + 3 chia hết cho d ; 2n + 5 chia hết cho d

=> 2(n+3) - (2n + 5) chia hết cho d

=> 2n + 6 - 2n - 5 chia hết cho d => 1 chia hết cho d => d = 1

Vậy......

b) Vì 2n + 5 là số lẻ nên 2n + 5 không chia hết cho 4 

=> 4 không thể là ước chung của 2n + 5 và n + 1

Vậy...

bài làm

1)Gọi a = ƯC(n + 3; 2n + 5) 

=> n + 3 chia hết cho a ; 2n + 5 chia hết cho a

=> 2(n+3) - (2n + 5) chia hết cho a

=> 2n + 6 - 2n - 5 chia hết cho a => 1 chia hết cho a => a= 1

Vậy...................

2) Vì 2n + 5 là số lẻ nên 2n + 5 không chia hết cho 4 

=> 4 không thể là ước chung của 2n + 5 và n + 1

Vậy........................

hok tốt

3 tháng 2 2019

\(a;\frac{2n+5}{n+3}\)

Gọi \(d\inƯC\left(2n+5;n+3\right)\Rightarrow3n+5⋮d;n+3⋮d\)

\(\Rightarrow2n+5⋮d\)và \(2\left(n+3\right)⋮d\)

\(\Rightarrow\left[\left(2n+6\right)-\left(2n+5\right)\right]⋮d\)

\(\Rightarrow1⋮d\Rightarrow d=1\)

Vậy \(\frac{2n+5}{n+3}\)là phân số tối giản

\(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)+5-6}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=2-\frac{1}{n+3}\)

Với \(B\in Z\)để n là số nguyên 

\(\Rightarrow1⋮n+3\Rightarrow n+3\inƯ\left(1\right)=\left\{\pm1\right\}\)

\(\Rightarrow n\in\left\{-2;-4\right\}\)

Vậy.....................

13 tháng 1 2021

a, \(\frac{2n+5}{n+3}\)Đặt \(2n+5;n+3=d\left(d\inℕ^∗\right)\)

\(2n+5⋮d\) ; \(n+3⋮d\Rightarrow2n+6\)

Suy ra : \(2n+5-2n-6⋮d\Rightarrow-1⋮d\Rightarrow d=1\)

Vậy tta có đpcm 

b, \(B=\frac{2n+5}{n+3}=\frac{2\left(n+3\right)-1}{n+3}=\frac{-1}{n+3}=\frac{1}{-n-3}\)

hay \(-n-3\inƯ\left\{1\right\}=\left\{\pm1\right\}\)

-n - 31-1
n-4-2