K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 2 2016

 

 

 

$a=b=\sqrt{2}$a)a,b có thể là số vô tỉ . VD;a=b=2 là vô tỉ mà ab và a/b đều hữu tỉ.

b) Trong trường hợp này $a,b$a,b không là số vô tỉ (tức cả a,b đều là số hữu tỉ). Thực vậy theo giả thiết  $a=bt$a=bt,  với $t$t là số hữu tỉ khác $-1$1. Khi đó $a+b=b\left(1+t\right)=s$a+b=b(1+t)=s là số hữu tỉ, suy ra $b=\frac{s}{1+t}$b=s1+t  là số hữu tỉ. Vì vậy $a=bt$a=bt  cũng hữu tỉ.

c) Trong trường hợp này $a,b$a,b  có thể là số vô tỉ. Ví dụ ta lấy 

$a=1-\sqrt{3},b=3+\sqrt{3}\to a,b$a=13,b=3+3a,b vô tỉ nhưng $a+b=4$a+b=4  là số hữu tỉ và $a^2b^2=\left(ab\right)^2=12$$a^2b^2=\left(ab\right)^2=12$

a2b2=(ab)2=12 cũng là số hữu tỉ 

 

6 tháng 2 2016

ủa ! 

tui làm đầy đủ mà sao nó chỗ hiện chỗ ko vậy 

???????????????????????

17 tháng 7 2020

Trả lời:

a) a và b có thể là các số vô tỉ

b) a và b không thể là các số vô tỉ

c) a và b không thể là các số vô tỉ

Đây là e nghĩ vậy chớ ko bt đúng sai ra sao đâu ạ!

19 tháng 7 2020

Gợi ý bài làm này! 

+)  Xét các số có thể là số vô tỉ thì đưa ra ví dụ cụ thể

+) Xét các số  là không là số vô tỉ thì chứng minh

a) a; b có thể  là số vô tỉ 

Chứng minh: Lấy VD:  a = \(\sqrt{2}\); b= \(\sqrt{3}\) là 2 số vô tỉ

\(\sqrt{2}.\sqrt{3}=\sqrt{6};\frac{\sqrt{2}}{\sqrt{3}}=\frac{\sqrt{6}}{3}\)thỏa mãn  2 số vô tỉ 

b) a; b không thể là số vô tỉ 

Chứng minh: 

\(\frac{a}{b}\)là số hữu tỉ => tồn tại số hữu tỉ m để: \(\frac{a}{b}=m\)<=> a = mb

khi đó: \(a+b=mb+b=\left(m+1\right)b\) là số hữu tỉ 

mà m là số hữu tỉ => m + 1 là số hữu tỉ  => b là số hữu tỉ 

=> a là số hữu tỉ 

c) a ; b không thể là số vô tỉ 

Chứng minh: 

\(a^2;b^2\)là số hữu tỉ 

=> \(a^2-b^2=\left(a-b\right)\left(a+b\right)\)là số hữu tỉ  mà a + b là số hữu tỉ => a - b là số hữu tỉ 

Đặt: a + b = m; a - b = n => m; n là 2 số hữu tỉ 

=> \(a=\frac{m+n}{2};b=\frac{m-n}{2}\) là 2 số hữu tỉ

12 tháng 12 2023

mọi ng giúp với

 

13 tháng 12 2023

loading...  loading...  loading...  

27 tháng 7 2016

Trước hết chứng minh \(\sqrt[3]{2}\) là một số vô tỉ.

Ta giả sử \(\sqrt[3]{2}\)hữu tỉ thì luôn tồn tại các số nguyên \(m,n\ne0\)sao cho \(\left(m,n\right)=1\)và \(\sqrt[3]{2}=\frac{m}{n}\)(1)

Suy ra \(\frac{m^3}{n^3}=2\)\(\Rightarrow\)\(m^3=2n^3\)\(\Rightarrow\)\(m^3\)chia hết cho \(n^3\)

Gọi \(k\)là 1 ước nguyên tố nào đó của \(n\)thế thì \(m^3\)chia hết cho \(k\)do đó \(m\)chia hết cho \(k\)

Như vậy \(k\)là ước nguyên tố của \(m\)và \(n\), trái với \(\left(m,n\right)=1.\)Vậy  \(\sqrt[3]{2}\) là một số vô tỉ.

Ta quay trở lại giải bài toán trên:

Giả sử tồn tại các số hữu tỉ p, q, r với \(r>0\)sao cho \(\sqrt[3]{2}=p+q\sqrt{r}.\)Khi đó \(p\)và \(q\)không đồng thời bằng 0.

Ta có \(2=\left(p+q\sqrt{r}\right)^3=p^3+3p^2q\sqrt{r}+3pq^2r+q^3r\sqrt{r}\)

\(\Rightarrow\)\(2-p^3-3pq^2r=3p^2q\sqrt{r}+q^3r\sqrt{r}=q\left(3p^2+q^2r\right)\sqrt{r}\)(*)

- Nếu \(q\left(3p^2+q^2r\right)=0\)thì \(q=0\)\(\Rightarrow\)\(p=\sqrt[3]{2},\)vô lý.

- Nếu \(q\left(3p^2+q^2r\right)\ne0\)thì (*) \(\Leftrightarrow\)\(\sqrt{r}=\frac{2-p^3-3pq^2r}{q\left(3p^2+q^2r\right)}\)

Do đó \(\sqrt[3]{2}=p+q\sqrt{r}\)là một số hữu tỉ (mâu thuẫn).

Vậy ta có đpcm.

28 tháng 7 2016

(sqrt)