Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1) a/b = a - 1. vì a+ b= ab
( ab-a) - 1= 0
a(b-1)= 1
vì ab = a/b => a= 0 và b = 1/b => b=0 ( vô lý)
=> b= -1 hoặc 1
+) Nếu b= 1 => a+1 = a ( vô lý)
+) Nếu b= -1 => a-1 = -a ( điều phải chứng minh)
3) => 2a = 1 => a= 1/2
2) khi đó : a/b = 1/2 : (-1) = -1/2
a-1 = 1/2 -1 = -1/2
=> a/b = a-1 ( đpcm)
vậy a/b = a - 1; b= -1; a= 1/2
CRE: L.Uyen Nhi
1) a/b = a - 1. vì a+ b= ab
( ab-a) - 1= 0
a(b-1)= 1
vì ab = a/b => a= 0 và b = 1/b => b=0 ( vô lý)
=> b= -1 hoặc 1
+) Nếu b= 1 => a+1 = a ( vô lý)
+) Nếu b= -1 => a-1 = -a ( điều phải chứng minh)
2) => 2a = 1 => a= 1/2
3) khi đó : a/b = 1/2 : (-1) = -1/2
a-1 = 1/2 -1 = -1/2
=> a/b = a-1 ( đpcm)
vậy a/b = a - 1; b= -1; a= 1/2
CRE: L.Uyen Nhi
Ta có a3b+ab3+2a2b2+2a+2b+1=0
<=>a2+b2+2ab+2a+2b+1=-(a3b+ab3+2a2b2)+a2+b2+2ab
<=>(a+b+1)2=-ab(a+b)2-(a+b)2
<=>(a+b+1)2=(a+b)2(1-ab)
Nếu a+b=0 thì =>1=(1-ab)0=0(vô lí)
Nếu a+b khác 0:
Vì a,b là 2 số hữu tỉ =>(a+b+1)2 và (a+b)2 là bình phương của một số hữu tỉ
=>1-ab là bình phương của một số hữu tỉ
=>đpcm
nhi tham khảo bài giải này nhé
a + b = a . b = a / b
a ) Cho a/b = a - 1
=> a + b = a - 1 = a . b = a/b
=> a + ( -1 ) = a + b = a . b = a/b
=> b = -1
a -1 = a . b = a/b
b ) Vì a/b = a - 1 nên có a - 1 = a + b
=> a + ( -1 ) = a + b
Vậy b = -1
c ) a - 1 = a . -1 = a/-1 = a - 1 = -a = -a/1
=> a - 1 = -a
Từ \(\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\)
Ta có:\(\frac{a}{b}< \frac{a+c}{b+d}\)
\(\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\)
\(\Leftrightarrow ab+ad< ba+bc\)
\(\Leftrightarrow ad< bc\left(true\right)\left(1\right)\)
Chứng minh hoàn toàn tương tự ta có:
\(\frac{a+c}{b+d}< \frac{c}{d}\left(2\right)\)
Từ (1);(2) suy ra điều phải chứng minh.
Câu hỏi của Thảo Hiền Nguyễn - Toán lớp 7 - Học toán với Online Math
Bạn tham khảo nhé :>
\(a+b=ab=\dfrac{a}{b}\)
Ta có:
\(ab=\dfrac{a}{b}\Rightarrow ab=\dfrac{a^2}{ab}\)
\(\Rightarrow a^2b^2=a^2\)
\(\Rightarrow b^2=1\Rightarrow b=\pm1\)
Xét:
\(b=1\Rightarrow a+b=ab=\dfrac{a}{b}\Rightarrow a+1=a=a\left(KTM\right)\)
Xét:
\(b=-1\Rightarrow a+b=ab=\dfrac{a}{b}\Rightarrow a-1=-a=-a\)
\(\Rightarrow a-1=-a\)
\(\Rightarrow2a=1\Rightarrow a=\dfrac{1}{2}\)
Ta có:
\(\dfrac{a}{b}=a-1\rightarrowđpcm\)
\(b=-1\rightarrowđpcm\)
\(a=\dfrac{1}{2}\)