Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\frac{a}{b}< \frac{c}{d}\) và \(b.d>0\) nên suy ra \(ad< bc\).
Tách bất đẳng thức kép cần chứng minh thành 2 bất đảng thức \(\frac{a}{b}< \frac{a+c}{b+d}\) và \(\frac{a+c}{b+d}< \frac{c}{d}\)
Ta cần chứng minh:
\(\frac{a}{b}< \frac{a+c}{b+d}\)
\(\Leftrightarrow a\left(b+d\right)< \left(a+c\right)b\) (do b, d > 0)
\(\Leftrightarrow ab+ad< ab+cb\)
\(\Leftrightarrow ad< cb\)
Bất đẳng thức cuối đúng nên bất đẳng thức \(\frac{a}{b}< \frac{a+c}{b+d}\) đúng.
Ta cần chứng minh tiếp:
\(\frac{a+c}{b+d}< \frac{c}{d}\)
\(\Leftrightarrow\left(a+c\right)d< c\left(b+d\right)\) do b.d > 0
\(\Leftrightarrow ad+cd< cb+cd\)
\(\Leftrightarrow ad< cb\)
Bất đẳng thức cuối đúng do giả thiết.
Vậy bài toán được chứng minh
b) Áp dụng câu a ta có:
Từ \(\frac{-1}{3}< \frac{-1}{4}\) => \(\frac{-1}{3}< \frac{-1-1}{3+4}< \frac{-1}{4}\)
Ta lấy phân số xen giữa là \(-\frac{2}{7}\) và ta có: \(\frac{-1}{3}< \frac{-2}{7}< \frac{-1}{4}\)
Áp dụng tiếp kết quả câu a ta được:
\(\frac{-1}{3}< \frac{-1-2}{3+7}< \frac{-2}{7}< \frac{-2-1}{7+4}< \frac{-1}{4}\)
Hay là:
\(\frac{-1}{3}< \frac{-3}{10}< \frac{-2}{7}< \frac{-3}{11}< \frac{-1}{4}\)
Và 3 phân số xen giữa là: \(-\frac{3}{10};-\frac{2}{7};-\frac{3}{11}\)
a, Ta chứng minh: \(\frac{a}{b}< \frac{a+c}{b+d}\), biết \(\frac{a}{b}< \frac{c}{d}\)
\(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{ad}{bd}< \frac{cd}{bd}\)vì \(b>0;d>0\Rightarrow ad< bc\)
\(\Rightarrow ad+ab< bc+ab\Rightarrow ab+d< ba+c\Rightarrow\frac{a+c}{b+d}\)
Tương tự: \(\frac{a}{b}< \frac{c}{d}\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\). Vậy \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
b, \(\frac{-1}{3}=\frac{-16}{48}< \frac{-15}{48};\frac{-14}{48};\frac{-13}{48}< \frac{-12}{48}=\frac{-1}{4}\)
Vậy 3 số hữu tỉ đó là: \(\frac{-15}{48};\frac{-14}{48};\frac{-13}{48}\)
Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> \(\frac{a}{b}< \frac{a+c}{b+d}\)
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> \(\frac{a+c}{b+d}< \frac{c}{d}\)
=> z < y (2)
Từ (1) và (2) => x < z < y
Vì x<y⇒ab <cd ⇒ad<bc (*)
Thêm ab vào hai vế của (*) : ad + ab < bc + ab
=> a(b+d) < b(a+c)
=> ab <a+cb+d
=> x < z (1)
Thêm cd vào hai vế của (*): ad + cd < bc + cd
=> d(a + c) < c(b + d)
=> a+cb+d <cd
=> z < y (2)
Từ (1) và (2) => x < z < y
1.
Ta có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow ad< bc\Leftrightarrow ab+ad< ad+bc\Leftrightarrow a\left(b+d\right)< b\left(a+c\right)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\) (1)
Lại có: \(\frac{a}{b}< \frac{c}{d}\Leftrightarrow bc>ad\Leftrightarrow bc+cd>ad+cd\Leftrightarrow c\left(b+d\right)>d\left(a+c\right)\Leftrightarrow\frac{c}{d}>\frac{a+c}{b+d}\) (2)
Từ (1) và (2) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)
2.
Ta có: a(b + n) = ab + an (1)
b(a + n) = ab + bn (2)
Trường hợp 1: nếu a < b mà n > 0 thì an < bn (3)
Từ (1),(2),(3) suy ra a(b + n) < b(a + n) => \(\frac{a}{n}< \frac{a+n}{b+n}\)
Trường hợp 2: nếu a > b mà n > 0 thì an > bn (4)
Từ (1),(2),(4) suy ra a(b + n) > b(a + n) => \(\frac{a}{b}>\frac{a+n}{b+n}\)
Trường hợp 3: nếu a = b thì \(\frac{a}{b}=\frac{a+n}{b+n}=1\)
Ta có
a/b<c/d \(\Leftrightarrow\)ad<bc (1)
Thêm ab vào 2 vế của (1) ta được:
ad+ab<bc+ab hay a(b+d)<b(a+c) =>a/b<a+c/b+d (2)
Thêm cd vào 2 vế của (2) ta được:
ad+cd<bc+cd hay d(a+c)<c(b+d) =>c/d>a+c/b+d (3)
Từ (2) và (3) suy ra:a/b<a+c/b+d<c/d
**** bạn
a, \(\frac{a}{b}=\frac{a\left(b+d\right)}{b\left(b+d\right)}=\frac{ab+ad}{b\left(b+d\right)}\)
\(\frac{a+c}{b+d}=\frac{b\left(a+c\right)}{b\left(b+d\right)}=\frac{ab+bc}{b\left(b+d\right)}\)
VCif a/b<c/d => ad<bc
=> ab + ad < ab +ad
=> a/b < (a+c) / (b+d) (1)
Cm tương tự :
(a+c) / (b+d) < c/d (2)
Từ 1 và 2 => DPCM
Gỉa sử : \(\frac{a}{b}< \frac{a+c}{b+c}< =>ab+ac< ab+bc\)
\(< =>ac< bc< =>a< b\)(đpcm)
Gỉa sử : \(\frac{a}{b}>\frac{a+c}{b+c}< =>ab+ac>ab+bc\)
\(< =>ac>bc< =>a>b\)(đpcm)
a, a + b = ab
=> a = ab - b
=> a = b(a - 1) (*)
=> \(\frac{a}{b}=a-1\) (1)
b, Vì \(a+b=\frac{a}{b}\) (2)
Từ (1) và (2) => b = -1
c, Thay b vào (*) ta có: a = -a + 1 => -2a = -1 => a = \(\frac{1}{2}\)