Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt AM-GM ta có:
\(\frac{x^2}{y+z}+\frac{y+z}{4}\ge2\sqrt{\frac{x^2}{y+z}.\frac{y+z}{4}}=x\)
\(\frac{y^2}{x+z}+\frac{x+z}{4}\ge2\sqrt{\frac{y^2}{x+z}.\frac{x+z}{4}}=y\)
\(\frac{z^2}{y+x}+\frac{y+x}{4}\ge2\sqrt{\frac{z^2}{y+x}.\frac{y+x}{4}}=z\)
Cộng các vế của các bđt trên ta được:
\(P+\frac{x+y+z}{2}\ge x+y+z\)
\(\Rightarrow P\ge\frac{x+y+z}{2}=1\)
Dấu"="Xảy ra \(\Leftrightarrow x=y=z=\frac{2}{3}\)
Áp dụng Svac - xơ:
\(P\ge\frac{\left(x+y+z\right)^2}{2\left(x+y+z\right)}=\frac{2^2}{2.2}=1\)
(Dấu "="\(\Leftrightarrow x=y=z=\frac{2}{3}\))
Yêu lớp 6B nhiều không còn cảm xúc nào có thể xen lẫn được tình cảm đó cả gửi nhầm nơi rồi ak nha.