Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=\dfrac{2x+3y}{2x+y+2}\Leftrightarrow2Ax+Ay+2A-2x-3y=0\Leftrightarrow2A=2x-2Ax+3y-Ay\Leftrightarrow2A=2x\left(1-A\right)+y\left(3-A\right)\Leftrightarrow\left(2A\right)^2=\left[2x\left(1-A\right)+y\left(3-A\right)\right]^2\left(1\right)\)Áp dụng bđt bunhiacopski ta có \(\left[2x\left(1-A\right)+y\left(3-A\right)\right]^2\le\left(4x^2+y^2\right)\left[\left(1-A\right)^2+\left(3-A\right)^2\right]\Leftrightarrow\left(2A\right)^2\le1.\left(1-2A+A^2+9-6A+A^2\right)\Leftrightarrow4A^2\le2A^2-8A+10\Leftrightarrow2A^2+8A-10\le0\Leftrightarrow A^2+4A-5\le0\Leftrightarrow A^2-A+5A-5\le0\Leftrightarrow A\left(A-1\right)+5\left(A-1\right)\le0\Leftrightarrow\left(A-1\right)\left(A+5\right)\le0\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}A-1\le0\\A+5\ge0\end{matrix}\right.\\\left\{{}\begin{matrix}A-1\ge0\\A+5\le0\end{matrix}\right.\end{matrix}\right.\)\(\Leftrightarrow\)\(\left[{}\begin{matrix}\left\{{}\begin{matrix}A\le1\\A\ge-5\end{matrix}\right.\\\left\{{}\begin{matrix}A\ge1\\A\le-5\end{matrix}\right.\left(ktm\right)\end{matrix}\right.\)
Vậy \(-5\le A\le1\)
Vậy GTNN của A là -5
GTLN của A là 1
a, Từ x+y=1
=>x=1-y
Ta có: \(x^3+y^3=\left(1-y\right)^3+y^3=1-3y+3y^2-y^3+y^3\)
\(=3y^2-3y+1=3\left(y^2-y+\frac{1}{3}\right)=3\left(y^2-2.y.\frac{1}{2}+\frac{1}{4}+\frac{1}{12}\right)\)
\(=3\left[\left(y-\frac{1}{2}\right)^2+\frac{1}{12}\right]=3\left(y-\frac{1}{2}\right)^2+\frac{1}{4}\ge\frac{1}{4}\) với mọi y
=>GTNN của x3+y3 là 1/4
Dấu "=" xảy ra \(< =>\left(y-\frac{1}{2}\right)^2=0< =>y=\frac{1}{2}< =>x=y=\frac{1}{2}\) (vì x=1-y)
Vậy .......................................
b) Ta có: \(P=\frac{x^2}{y+z}+\frac{y^2}{z+x}+\frac{z^2}{y+x}\)
\(=\left(\frac{x^2}{y+z}+x\right)+\left(\frac{y^2}{z+x}+y\right)+\left(\frac{z^2}{y+z}+z\right)-\left(x+y+z\right)\)
\(=\frac{x\left(x+y+z\right)}{y+z}+\frac{y\left(x+y+z\right)}{z+x}+\frac{z\left(x+y+z\right)}{y+z}-\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\)
Đặt \(A=\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}\)
\(A=\left(\frac{x}{y+z}+1\right)+\left(\frac{y}{z+x}+1\right)+\left(\frac{z}{y+x}+1\right)-3\)
\(=\frac{x+y+z}{y+z}+\frac{x+y+z}{z+x}+\frac{x+y+z}{y+x}-3\)
\(=\left(x+y+z\right)\left(\frac{1}{y+x}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\)
\(=\frac{1}{2}\left[\left(x+y\right)+\left(y+z\right)+\left(z+x\right)\right]\left(\frac{1}{x+y}+\frac{1}{y+z}+\frac{1}{z+x}\right)-3\ge\frac{9}{2}-3=\frac{3}{2}\)
(phần này nhân phá ngoặc rồi dùng biến đổi tương đương)
\(=>P=\left(x+y+z\right)\left(\frac{x}{y+z}+\frac{y}{z+x}+\frac{z}{y+x}-1\right)\ge2\left(\frac{3}{2}-1\right)=1\)
=>minP=1
Dấu "=" xảy ra <=>x=y=z
Vậy.....................
Lời giải:
Áp dụng BĐT Cauchy:
\(4=a^2+b^2\geq 2\sqrt{a^2b^2}=2|ab|\geq 2ab\Rightarrow ab\leq 2\)
\(P=a^4+b^4+4ab=(a^2+b^2)^2-2a^2b^2+4ab\)
\(=16-2(a^2b^2-2ab)=18-2(a^2b^2-2ab+1)\)
\(=18-2(ab-1)^2\)
Vì \((ab-1)^2\geq 0, \forall ab\leq 2\Rightarrow P=18-2(ab-1)^2\leq 18\)
Vậy \(P_{\max}=18\Leftrightarrow \left\{\begin{matrix} ab=1\\ a^2+b^2=4\end{matrix}\right.\)
\(a.\)
\(\text{*)}\) Áp dụng bđt \(AM-GM\) cho hai số thực dương \(x,y,\) ta có:
\(x+y\ge2\sqrt{xy}=2\) (do \(xy=1\) )
\(\Rightarrow\) \(3\left(x+y\right)\ge6\)
nên \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)
\(\Rightarrow\) \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)
\(\text{*)}\) Tiếp tục áp dụng bđt \(AM-GM\) cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\) ta có:
\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)
Do đó, \(D\ge6+5=11\)
Dấu \("="\) xảy ra khi \(x=y=1\)
Vậy, \(D_{min}=11\) \(\Leftrightarrow\) \(x=y=1\)
\(b.\) Bạn tìm điểm rơi rồi báo lại đây
Từ \(\frac{1}{a}+\frac{1}{b}=2\Rightarrow\frac{a}{ab}+\frac{b}{ab}=2\Rightarrow\frac{a+b}{ab}=2\)
\(\Rightarrow2ab=a+b\ge2\sqrt{ab}\Rightarrow\hept{\begin{cases}ab\ge1\\a+b\ge2\sqrt{ab}\ge2\end{cases}}\)
Áp dụng BĐT AM-GM ta có:
\(a^4+b^2+2ab^2\ge2\sqrt{a^4b^2}+2ab^2=2a^2b+2ab^2\)
\(b^4+a^2+2a^2b\ge2\sqrt{a^2b^4}+2a^2b=2ab^2+2a^2b\)
Khi đó \(Q\le\frac{1}{2a^2b+2ab^2}+\frac{1}{2ab^2+2a^2b}\le\frac{1}{4}+\frac{1}{4}=\frac{1}{2}\)
Đẳng thức xảy ra khi \(a=b=1\)
P/s: 2ab -> 2a2b và 2ab2