Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AA1=AB : 2 = 1 : 21 = \(\frac{1}{2^1}\)
AA2 = AA1 : 2 = AB : 2 : 2 = AB : 22 =\(\frac{1}{2^2}\)
Tương tự AA2019=\(\frac{1}{2^{2019}}\)
A M 1 M 2 M 100 B
Có : \(M_1B=\frac{AB}{2}=\frac{2^{100}}{2}\)
\(M_2B=\frac{M_1B}{2}=\frac{2^{100}}{2^2}\)
\(M_3B=\frac{M_2B}{2}=\frac{2^{100}}{2^3}\)
...
\(M_{100}B=\frac{2^{100}}{2^{100}}=1\)
Vì \(BM_{100}< BM_1(1< 2^{99})\)nên điểm \(M_{100}\)nằm giữa hai điểm B và M1
Do đó : \(M_1M_{100}=M_1B-M_{100}B=2^{99}-1(cm)\)
M1 là trung điểm của đoạn thẳng AB nên:
Ta có: M1B=AB2=21002=299M1B=AB2=21002=299
M2B=M1B2=210022=298M2B=M1B2=210022=298
................
M100B=21002100=1M100B=21002100=1
Vì BM100 < BM1 (1 < 299) nên điểm M100 nằm giữa B và M1
Do đó M1M100 = M1B - M100B = 299 - 1 (cm)
Câu 1:
Ta có:
abbc < 10.000
=> ab.ac.7 < 10000
=> ab.ac < 1429
=> a0.a0 < 1429 (a0 là số 2 chữ số kết thúc = 0)
=> a0 < 38
\(\Rightarrow a\le3\)
+) Với a = 3 ta có
3bbc = 3b.3c.7
Ta thấy 3b.3c.7 > 30.30.7 = 6300 > 3bbc => loại
+)Với a = 2 ta có
2bbc = 2b.2c.7
Ta thấy 2b.2c.7 > 21.21.7 = 3087 > 2bbc => loại ( là 21.21.7 vì b và c khác 0 nên nhỏ nhất = 1)
=> a chỉ có thể = 1
Ta có 1bbc = 1b.1c.7
Có 1bbc > 1b.100 => 1c.7 > 100 => 1c > 14 => c >= 5
Lại có 1bbc = 100.1b + bc < 110.1b ( vì bc < 1b.10)
=> 1c.7 < 110 => 1c < 16 => c < 6
Vậy c chỉ có thể = 5
Ta có 1bb5 = 1b.15.7 => 1bb5 = 1b.105
<=> 100.1b + b5 = 1b.105b
<=> b5 = 5.1b
<=> 10b + 5 = 5.(10+b)
=> b = 9
Vậy số abc là 195
Thấy Sn có (n+1) số hạng trong tổng; VD: s100 có 101 số hạng
* Xét dãy: 2, 3, 4,..., 101
2+3+4+..+101 = (2+101).100/2 = 5150 là tổng các số hạng của S1, S2, .., S100
* Dãy 1, 2, 3,.., 5150 rõ ràng có số hạng thứ 5150 là 5150
nên ta có số hạng cuối cùng trong S100 là 5150
=> S100 = 5050 + 5051 + 5052 + .. + 5150 (có 101 số hạng)
S100 = (5050+5150).101/2 = 515100
Thấy Sn có (n+1) số hạng trong tổng; VD: s100 có 101 số hạng ; s1 có 2 số ; s2 có 3 số
* Xét dãy: 2, 3, 4,..., 101
2+3+4+..+101 = (2+101).100/2 = 5150 là tổng các số hạng của S1, S2, .., S100
* Dãy 1, 2, 3,.., 5150 rõ ràng có số hạng thứ 5150 là 5150
nên ta có số hạng cuối cùng trong S100 là 5150
=> S100 = 5050 + 5051 + 5052 + .. + 5150 (có 101 số hạng)
S100 = (5050+5150).101/2 = 515100
~~~~~~~~
giải thích cho lớp 5 dễ hiểu!!!!!
* tính tổng: A = 2+3+4+..+101
=> A = 101 + 100 + .. + 3+2
=> 2A = (2+101) + (3+100) + (4+99) +..+(101+2)
2A = 103 + 103 +..+103 = 103x100
=> A = 103x100 : 2 = 5150
* tổng S100 tính tương tự, chú ý là số hạng sau cùng là 5150 thì trước nó 101 số hạng là số 5150 - 100 = 5050
thôi khỏi cần 1 cái tick của mẹ
AI KO MUỐN GIẢI KO CẦN ĐỌC.