Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\hept{\begin{cases}x^2+a_1x+b_1=0\left(1\right)\\x^2+a_2x+b_2=0\left(2\right)\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}\Delta_1=a_1^2-4b_1\\\Delta_2=a_2^2-4b_2\end{cases}}\)
\(\Rightarrow\Delta_1+\Delta_2=a_1^2+a_2^2-4\left(b_1+b_2\right)\ge2a_1a_2-4\left(b_1+b_2\right)\ge0\)
\(\Rightarrow a_1a_2-2\left(b_1+b_2\right)\ge0\)
Vì \(\Delta_1+\Delta_2\ge0\)
nên có ít nhất 1 trong 2 cái \(\Delta\) không âm .
\(\Rightarrow\)Có ít nhất 1 trong hai phương trình có nghiệm .
Ta có denta 1 + denta 2 = a12 -4b1 + a22 - 4b2 >= 2a1 a2 - 4(b1 + 4b2) >= 4(b1 + 4b2) - 4(b1 + 4b2) = 0
Vậy có ít nhất 1 trong 2 denta >= 0 nên có ít nhất 1 phương trình có nghiệm
Có: \(\Delta=a^2b^2-4a-4b\)
Để pt có 2 nghiệm thì \(\Delta\ge0\)
\(\Leftrightarrow a^2b^2\ge4a+4b\)
Theo Vi-et: \(\hept{\begin{cases}x_1+x_2=ab\\x_1x_2=a+b\end{cases}}\)
Ta có: \(x_1^2+x_2^2\ge2\left(x_1+x_2\right)\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2\ge2ab\)
\(\Leftrightarrow a^2b^2-2a-2b\ge2ab\)
\(\Leftrightarrow a^2b^2\ge2a+2b+2ab\)
Hmmm
\(ax_1+bx_2+c=0\)
\(x_2\)là nghiệm phương trình nên \(ax_2^2+bx_2+c=0\Rightarrow a\left(x_2^2-x_1\right)=0\Leftrightarrow x_2^2-x_1=0\Leftrightarrow x_1=x_2^2\)
Theo định lí Viete:
\(\hept{\begin{cases}x_1+x_2=-\frac{b}{a}\\x_1x_2=\frac{c}{a}\end{cases}}\).
Ta sẽ chứng minh \(a^2c+ac^2+b^3-3abc=0\).
Thật vậy, ta có:
\(a^2c+ac^2+b^3-3abc=0\)
\(\Leftrightarrow\frac{c}{a}+\left(\frac{c}{a}\right)^2+\left(\frac{b}{a}\right)^3-\frac{3bc}{a^2}=0\)
\(\Rightarrow x_1x_2+x_1^2x_2^2-\left(x_1+x_2\right)^3+3x_1x_2\left(x_1+x_2\right)=0\)
\(\Leftrightarrow x_1x_2+x_1^2x_2^2-x_1^3-x_2^3=0\)
\(\Leftrightarrow x_2^2x_2+x_1^2x_2-x_1^3-x_2^3=0\)
\(\Leftrightarrow0x_1^3+0x_2^3=0\)đúng.
Ta biến đổi tương đương nên đẳng thức ban đầu cũng đúng.
Khi đó \(M=0+2018=2018\).