Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Team lớp Aωîñdøω þhøñëNguyễn Hải Dươngnguyen thi vangHoàng Thảo LinhTentenKayokoTrần Hoàng SơnNguyễn Hoàng Anh Thưdfsa
Đề khó hiểu quá bạn ơi. Bạn có thể viết lại giùm mình được không?
Team lớp A ωîñdøω þhøñë nguyen thi vang Tenten + những thánh Lý giúp mình vs......
đầu tiên bạn hãy vẽ b' đối xứng b qua gương M
a' đối xứng a qua gương N
nối a' và b' cắt gương M tại J và I tại gương N.
BIJA là tia sáng cần tìm.
Gọi vận tốc ô tô đi từ A là \(v_A\), vận tốc ô tô đi từ B là \(v_b\)
\(9h48'=9,8h\)
Theo giả thiết:
\(\begin{cases}3.v_A+2.v_B=AB\left(1\right)\\1,8.v_a+2,8.v_b=AB\left(2\right)\end{cases}\)
Từ (1) và (2), ta có: \(3.v_A+2.v_B=1,8.v_a+2,8.v_B\)
\(1,2.v_a=0,8.v_b\)
\(v_B=1,5.v_A;v_a=\frac{3}{2}.v_B\)
Thay vào (1), ta có: \(\begin{cases}6.v_A=AB\\4.v_B=AB\end{cases}\)Vậy ô tô đi từ A mất 6h để đi hết quãng đường, ô tô đi từ B mất 4h để đi hết quãng đường.
Vậy hàng ngày ô tô đi từ A đến B lúc 12h, ô tô đi từ B đến A lúc 11h.
ta có:
lúc xe ba gặp xe một thì:
S3=S1
\(\Leftrightarrow v_3t_3=v_1t_1\)
do xe ba xuất phát sau xe 1 30'=0,5h nên:
\(v_3t_3=v_1\left(t_3+0,5\right)\)
\(\Leftrightarrow v_3t_3=10\left(t_3+0,5\right)\)
\(\Leftrightarrow v_3t_3=10t_3+5\)
\(\Leftrightarrow v_3t_3-10t_3=5\)
\(\Rightarrow t_3=\frac{5}{v_3-10}\left(1\right)\)
lúc xe ba gặp xe một thì:
\(S_3'=S_2\)
\(\Leftrightarrow v_3t_3'=v_2t_2\)
do người ba đi sau người hai 30'=0,5h nên:
\(v_3t_3'=v_2\left(t_3'+0,5\right)\)
\(\Leftrightarrow v_3t_3'=12\left(t_3'+0,5\right)\)
\(\Leftrightarrow v_3t_3'-12t_3'=6\)
\(\Rightarrow t_3'=\frac{6}{v_3-12}\left(2\right)\)
ta lại có:
do thời gian hai lằn gặp cách nhau 1h nên:
\(t_3'-t_3=\Delta t\)
thế hai phương trình (1) và (2) vào phương trình trên ta được:
\(\frac{6}{v_3-12}-\frac{5}{v_3-10}=1\)
\(\Leftrightarrow\frac{6\left(v_3-10\right)-5\left(v_3-12\right)}{\left(v_3-12\right)\left(v_3-10\right)}=1\)
\(\Leftrightarrow6v_3-60-5v_3+60=v_3^2-10v_3-12v_3+120\)
\(\Leftrightarrow v_3=v_3^2-22v_3+120\)
\(\Leftrightarrow v_3^2-23v_3+120=0\)
giải phương trình trên ta dược:
v3=15km/h
v3=8km/h(loại)
vậy vận tốc của người ba là 15km/h
Bài 1:
a.
1 giờ 15 phút = 1,25 giờ
Quãng đường xe 1 đi được sau 1 giờ 15 phút là:
\(v_1=\frac{s_1}{t}\Rightarrow s_1=v_1\times t=42\times1,25=52,5\left(km\right)\)
Quãng đường xe 2 đi được sau 1 giờ 15 phút là:
\(v_2=\frac{s_2}{t}\Rightarrow s_2=v_2\times t=36\times1,25=45\left(km\right)\)
Khoảng cách từ A đến xe 2 sau 1 giờ 15 phút là:
\(24+45=69\left(km\right)\)
Khoảng cách giữa 2 xe sau 1 giờ 15 phút là:
\(69-52,5=16,5\left(km\right)\)
b.
Vì v1 > v2 nên 2 xe có thể gặp nhau.
Hiệu 2 vận tốc:
42 - 36 = 6 (km/h)
Thời gian để 2 xe gặp nhau là:
24 : 6 = 4 (giờ)
2 xe gặp nhau lúc:
7 + 4 = 11 (giờ)
Khoảng cách từ A đến chỗ gặp nhau là:
\(v=\frac{s}{t}\Rightarrow s=v\times t=42\times4=168\left(km\right)\)
Bài 2:
a.
Tổng 2 vận tốc:
30 + 50 = 80 (km/h)
Thời gian để 2 xe gặp nhau:
120 : 80 = 1,5 (giờ)
Khoảng cách từ A đến chỗ gặp nhau:
\(v=\frac{s}{t}\Rightarrow s=v\times t=30\times1,5=45\left(km\right)\)
b.
Quãng đường còn lại là (không tính phần cách nhau 40 km của 2 xe):
120 - 40 = 80 (km)
Do thời gian là như nhau nên ta có:
s1 + s2 = 80
t . v1 + t . v2 = 80
t . (30 + 50) = 80
t = 80 : 80
t = 1 ( giờ)
Khoảng cách từ A đến vị trí 2 cách nhau 40 km là:
\(v=\frac{s}{t}\Rightarrow s=v\times t=1\times30=30\left(km\right)\)
gọi:
t là thời gian dự định
ta có:
nếu xe đi với vận tốc 48km/h thì:
\(t=\frac{S}{48}+0.3\)
nếu xe đi với vận tốc 12km/h thì:
\(t=\frac{S}{12}-0.45\)
do thời gian dự định ko đổi nên:
\(\frac{S}{48}+0.3=\frac{S}{12}-0.45\)
giải phương trình ta có S=12km
tứ đó ta suy ra t=0.55h
b)ta có:
AC+BC=12
\(\Leftrightarrow v_1t_1+v_2t_2=12\)
\(\Leftrightarrow48t_1+12t_2=12\)
mà t1+t2=t=0.55
\(\Rightarrow48t_1+12\left(0.55-t_1\right)=12\)
giải phương trình ta có: t1=0.15h
từ đó ta suy ra AC=7.2km