Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔODE cân tại O
mà OM là trung tuyến
nên OM vuông góc DE
=>góc OMA=90 độ=góc OCA=góc OBA
=>O,A,B,M,C cùng thuộc 1 đường tròn
b: Xét ΔBSC và ΔCSD có
góc SBC=góc SCD
góc S chung
=>ΔBSC đồng dạng với ΔCSD
=>SB/CS=SC/SD
=>CS^2=SB*SD
góc DAS=gócEBD
=>góc DAS=góc ABD
=>ΔSAD đồng dạng với ΔSBA
=>SA/SB=SD/SA
=>SA^2=SB*SD=SC^2
=>SA=SC
c; BE//AC
=>EH/SA=BH/SC=HJ/JS
mà SA=SC
nênHB=EH
=>H,O,C thẳng hàng
Do \(AB=AC\Rightarrow\widehat{ABC}=\widehat{AEB}\) (hai góc nt chắn 2 cung bằng nhau)
Xét 2 tam giác ADB và ABE có:
\(\left\{{}\begin{matrix}\widehat{BAD}\text{ chung}\\\widehat{ABD}=\widehat{AEB}\left(cmt\right)\end{matrix}\right.\) \(\Rightarrow\Delta ADB\sim\Delta ABE\left(g.g\right)\)
\(\Rightarrow\dfrac{AD}{AB}=\dfrac{AB}{AE}\Rightarrow AB^2=AD.AE\)
1: Xét tứ giác ABOC có
\(\widehat{OBA}+\widehat{OCA}=180^0\)
Do đó: ABOC là tứ giác nội tiếp
x D F E K A O I B C O'
a) Ta có: AIBC nội tiếp ( O')
=> ^BAC = ^BIC (1)
ABDE nội tiếp ( O) có CA là tiếp tuyến
=> ^CAB = ^ADB ( cùng chắn cung AB ) (2)
Từ (1) ; (2) => ^ADB = ^BIC => ^KDB = ^CIB => B; I; K; D nội tiếp => ^KBD = ^KID
mà ^KBD = ^EBD = ^EAD = FAD
=> ^FAD = ^KID = ^FID
=> FAID nội tiếp
b) Kéo dài tia FD ------> tia Fx
FAID nội tiếp => ^DFI = ^DAI
I; A: C; B nội tiếp ( O') => ^IAB = ^ICB
=> ^DFI + ^ICB = ^DAI + ^IAB
Mà ^xDC = ^DFC + ^DCF = ^DFI + ^ICB
^DAB = ^DAI + ^IAB
=> ^xDC = ^DAB => ^xDB = ^DAB
=> Dx là tiếp tuyến ( O)
=> DF là tiếp tuyến ( O)