Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
PT (2) $\Leftrightarrow x+y+xy+1=0$
$\Leftrightarrow (x+1)(y+1)=0$
$\Rightarrow x+1=0$ hoặc y+1=0$
Nếu $x+1=0$ suy ra $x=-1$. Thay vào PT $(1)$ suy ra $y^2=2\Rightarrow y=\pm \sqrt{2}$
Nếu $y+1=0\Rightarrow y=-1$. Thay vào PT $(1)$ suy ra $x^2=2\Rightarrow x=\pm \sqrt{2}$
Vậy $(x,y)=(-1; \pm \sqrt{2}); (\pm \sqrt{2}; -1)$
Từ đây ta suy ra:
A đúng.
B đúng
C sai
D đúng
a: Thay x=-1 và y=3 vào (d), ta được:
-2-m+1=3
=>-1-m=3
=>-m=4
hay m=-4
b: PTHĐGĐ là:
\(\dfrac{1}{2}x^2-2x+m-1=0\)
\(\Leftrightarrow x^2-4x+2m-2=0\)
\(\text{Δ}=\left(-4\right)^2-4\left(2m-2\right)\)
\(=16-8m+8=-8m+24\)
Để (d) cắt (P) tại hai điểm phân biệt thì -8m+24>0
hay m<3
Theo Vi-et, ta được:
\(\left\{{}\begin{matrix}x_1+x_2=4\\x_1x_2=2m-2\end{matrix}\right.\)
Theo đề, ta có: \(x_1\cdot x_2\left(x_1^2+x_2^2\right)=-48\)
=>\(\Leftrightarrow\left(2m-2\right)\cdot\left[4^2-2\left(2m-2\right)\right]=-48\)
\(\Leftrightarrow\left(m-1\right)\left(16-4m+4\right)=-24\)
\(\Leftrightarrow\left(m-1\right)\left(-4m+20\right)=-24\)
\(\Leftrightarrow\left(m-1\right)\left(m-5\right)=6\)
\(\Leftrightarrow m^2-6m-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}m=3+\sqrt{10}\left(loại\right)\\m=3-\sqrt{10}\left(nhận\right)\end{matrix}\right.\)
Bài 1:
Gọi $I$ là tâm đường tròn. Vì $I$ nằm trên đt \(\Delta: 3x-y+7=0\) nên $I$ có tọa độ $(a,3a+7)$
Đường tròn tiếp xúc với trục Ox nên:
\(d(I,Ox)=R=1\Leftrightarrow |3a+7|=1\Rightarrow \left[\begin{matrix} a=-2\\ a=\frac{-8}{3}\end{matrix}\right.\)
Nếu \(a=-2\Rightarrow I(-2, 1)\). PTĐTr là:
\((x+2)^2+(y-1)^2=1\)
Nếu \(a=-\frac{8}{3}\Rightarrow I(\frac{-8}{3}, -1)\). PTĐTr là:
\((x+\frac{8}{3})^2+(y+1)^2=1\)
Bài 2:
Ta viết lại pt đường tròn:
\(x^2+y^2-2x-4y-4=0\)
\(\Leftrightarrow (x-1)^2+(y-2)^2-9=0\)
\(\Leftrightarrow (x-1)^2+(y-2)^2=9\)
Vậy đường tròn $(C)$ có tâm $I(1,2)$ và bán kính $R=3$
Có : \(d(I,(d))=\frac{|3x_I+4y_I+4|}{\sqrt{3^2+4^2}}=\frac{|3.1+4.2+4|}{5}=3=R_{(C)}\)
Do đó đường thẳng (d) tiếp xúc với đường tròn $(C)$
Phương trình có 2 nghiệm x1;x2 thì :\(\Delta>0\)
\(\Delta=9+4.6=33>0\)
Theo định lí Vi-ét,ta có :
\(\left\{{}\begin{matrix}x_1+x_2=3\\x_1.x_2=-6\end{matrix}\right.\)
Mà : \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1.x_2=3^2+12=21\)
=> Chọn A.(21)
CHỌN D:900
\(d_1\) nhận \(\overrightarrow{n_1}=\left(1;2\right)\) là 1 vtpt
\(d_2\) nhận \(\overrightarrow{n_2}=\left(2;-1\right)\) là 1 vtpt
Do \(\overrightarrow{n_1}.\overrightarrow{n_2}=1.2+2.\left(-1\right)=0\Rightarrow d_1\perp d_2\)
hay góc giữa 2 đường thẳng là 90 độ