Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, để d1 cat d2 <=> \(2+m\ne1+2m\)
\(\Leftrightarrow m\ne1\)
b, d1: y= x + 1
d2: y= -x + 2
pt hoanh do giao diem cua d1 va d2:
x+1 = -x +2 <=> x = 1/2
=> y = 1/2 +1 = 1,5
toa đô giao diem A(1/2 ; 1,5)
hìh tụ vẽ
a,\(\left(d_1\right)\cap\left(d_2\right)\Rightarrow a\ne a'\)
=> \(2+m\ne1+2m\)\(\Leftrightarrow m\ne1\)
b, thay m=-1 vào ta được
\(\left(d_1\right):y=1x+1\)
\(\left(d_2\right):y=-x+2\)
Hoành độ giao điểm của 2 đường thẳng là nghiệm của pt:
x+1=-x+2
\(\Leftrightarrow2x=1\Leftrightarrow x=\dfrac{1}{2}\)thay vào \(\left(d_1\right)\) ta có: y=\(\dfrac{1}{2}+1=\dfrac{3}{2}\)
Vậy tọa độ giao điểm của 2 đường thẳng là A\(\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)
b: Vì 1*(-1)=-1
nên (d2) vuông góc với (d3)
d1//d3
d2 vuông góc d3
Do đó: d1 vuông góc d2
c: Tọa độ giao là:
x+1=-x+3 và y=x+1
=>x=1 và y=2
Thay x=1 và y=2 vào (d1), ta được:
m^2-1+m^2-5=2
=>2m^2=2+6=8
=>m=2 hoặc m=-2
Bài 1:
Đặt: (d): y = (m+5)x + 2m - 10
Để y là hàm số bậc nhất thì: m + 5 # 0 <=> m # -5
Để y là hàm số đồng biến thì: m + 5 > 0 <=> m > -5
(d) đi qua A(2,3) nên ta có:
3 = (m+5).2 + 2m - 10
<=> 2m + 10 + 2m - 10 = 3
<=> 4m = 3
<=> m = 3/4
(d) cắt trục tung tại điểm có tung độ bằng 9 nên ta có:
9 = (m+5).0 + 2m - 10
<=> 2m - 10 = 9
<=> 2m = 19
<=> m = 19/2
(d) đi qua điểm 10 trên trục hoành nên ta có:
0 = (m+5).10 + 2m - 10
<=> 10m + 50 + 2m - 10 = 0
<=> 12m = -40
<=> m = -10/3
(d) // y = 2x - 1 nên ta có:
\(\hept{\begin{cases}m+5=2\\2m-10\ne-1\end{cases}}\) <=> \(\hept{\begin{cases}m=-3\\m\ne\frac{9}{2}\end{cases}}\) <=> \(m=-3\)
a) để \(\left(d_1\right)\cap\left(d_2\right)\) thì \(\left(2+m\right)x+1=\left(1+2m\right)x+2\)
\(\Leftrightarrow2x+mx+1=x+2mx+2\Leftrightarrow mx=x-1\Leftrightarrow m=\dfrac{x-1}{x}\)
b) bn tự vẽ nha :)
thế \(m=-1\) vào \(\left(d_1\right);\left(d_2\right)\) ta có : \(\left(d_1\right):y=x+1;\left(d_2\right):-x+2\)
để \(\left(d_1\right)\cap\left(d_2\right)\Leftrightarrow x+1=-x+2\Leftrightarrow x=\dfrac{1}{2}\) \(\Rightarrow y=\dfrac{1}{2}+1=\dfrac{3}{2}\)
\(\Rightarrow\left(d_1\right)\cap\left(d_2\right)\) tại \(A\left(\dfrac{1}{2};\dfrac{3}{2}\right)\)
Bài 3:
Đặt \(a=m^2-4\)
\(a)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)nghịch biến
\(\Leftrightarrow a< 0\)
\(\Leftrightarrow m^2-4< 0\)
\(\Leftrightarrow m^2< 4\)
\(\Leftrightarrow-\sqrt{4}< m< \sqrt{4}\)
\(\Leftrightarrow-2< m< 2\)
Vậy với \(-2< m< 2\)thì hàm số nghịch biến
\(b)\) Đồ thị hàm số \(y=\left(m^2-4\right)x-5\)đồng biến \(\forall x>0\)
\(\Leftrightarrow a>0\)
\(\Leftrightarrow m^2-4>0\)
\(\Leftrightarrow m^2>4\)
\(\Leftrightarrow\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)
Vậy với \(\orbr{\begin{cases}m>2\\m< -2\end{cases}}\)thì hàm số đồng biến \(\forall x>0\)