K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2016

Cô hướng dẫn nhé.

Giả sử điểm cầm tìm là M(a; 0). Như vậy, đường thẳng qua M, vuông góc với Ox là đường thẳng (d) : x = a.

Giao điểm của (d) với hai đường thẳng đã cho lần lượt là: \(A\left(a;\frac{2a-4}{3}\right)\) và \(B\left(a;\frac{3a-2}{5}\right)\)

Do a nguyên nên ta cầm tìm điều kiện để \(\frac{2a-4}{3}\) và \(\frac{3a-2}{5}\)nguyên.

Ta thấy \(\frac{2a-4}{3}=\frac{2\left(a-2\right)}{3}\)nên (a - 2) chia hết 3. Vậy thì a có dạng 3k + 2, (k nguyên dương).

\(\frac{3a-2}{5}=\frac{3a+3-5}{5}\) nên (3a + 3) chia hết 5 hay a + 1 chia hết 5. Vậy a có dạng 5t - 1, (t nguyên dương).

Kết hợp hai điều kiện: \(3k+2=5t-1\Leftrightarrow3\left(k+1\right)=5t\Leftrightarrow\frac{k+1}{5}=\frac{t}{3}.\)

a min thì k, t min nên ta tìm được k = 4, t = 3.

Vậy thi a = 14.

11 tháng 8 2016

kết quả bằng 14

17 tháng 11 2016

Gọi các điểm thỏa mãn điều kiện có tọa độ là \(\left(a;0\right)\)

Khi đó hệ sau có nghiệm nguyên:\(\hept{\begin{cases}a-2y=3\\a-3y=2\\x-5y=-7\end{cases}\Rightarrow\frac{a-3}{2};\frac{a-2}{3};\frac{a+7}{5}}\) nguyên.

TH1: \(a\ge0.\)

\(\frac{a-3}{2}\in Z\) nên a lẻ; \(\frac{a+7}{5}\in Z\Rightarrow\) a chia 5 dư 3. Kết hợp hai điều kiện trên thì a có tận cùng là 3.

Khi đó a - 2 có tận cùng là 1. Vậy để \(\frac{a-2}{3}\in Z\) thì a - 2 = 34k \(\left(k\in N;k\ge1\right)\)

Vậy a = 2 +34k \(\left(k\in N;k\ge1\right)\)

TH2: a < 0

\(\frac{a-3}{2}\in Z\Rightarrow\)- a là số tự nhiên lẻ. \(\frac{a+7}{5}\in Z\Rightarrow\)  -a chia 5 dư 2. Vậy -a có tận cùng là 7, vậy a có tận cùng là 7.

Vậy thì a - 2 có tận cùng là 9. Vậy a - 2 = -34k+2 \(\left(k\in N;k\ge0\right)\)

Hay a = 2 - 34k+2 \(\left(k\in N;k\ge0\right)\)

Tóm lại các điểm thỏa mãn điều kiện của đề bài sẽ có tọa độ là \(\left(2+3^{4k};0\right)\) với \(\left(k\in N;k\ge1\right)\) hoặc \(\left(2-3^{4k+2};0\right)\) với \(\left(k\in N;k\ge0\right)\)

17 tháng 11 2016

Bài này tương tự như bài cô đã chứng minh. 

Gọi các điểm thỏa mãn yêu cầu có tọa độ \(\left(0;b\right)\)

Khi đó hệ sau có nghiệm nguyên \(\hept{\begin{cases}x+2b=6\\2x-3b=4\end{cases}\Rightarrow6-2b;\frac{4+3b}{2}\in Z.}\)

b nguyên nên 6 - 2b nguyên là hiển nhiên. Để \(\frac{4+3b}{2}\in Z\) thì b = 2k.

Vậy các điểm thỏa mãn sẽ có tọa độ là (0;2k)  (\(k\in Z\) ).

17 tháng 11 2016

cái này dễ mỗi tội tớ k biết làm

viết phương trình đường thẳng a) đường thẳng song song vs đường thẳng (d1): y=3x-1 và đi qua giao điểm của 2 đường thẳng (d2): y=-x+5 và (d3): y=x-4b)đường thẳng vuông góc vs đường thẳng (d1) y=-5x-3 và ik qua giao điểm 2 đường thẳng (d2) y=2-3x , (d3) y=-x+4c)đưởng thẳng cắt trục hoành tại điểm có hoành độ =-1 và song song vs đưởng thẳng y=5x-2d) đưởng thẳng giao vs trục tung tại điểm D có...
Đọc tiếp

viết phương trình đường thẳng 

a) đường thẳng song song vs đường thẳng (d1): y=3x-1 và đi qua giao điểm của 2 đường thẳng (d2): y=-x+5 và (d3): y=x-4
b)đường thẳng vuông góc vs đường thẳng (d1) y=-5x-3 và ik qua giao điểm 2 đường thẳng (d2) y=2-3x , (d3) y=-x+4
c)đưởng thẳng cắt trục hoành tại điểm có hoành độ =-1 và song song vs đưởng thẳng y=5x-2
d) đưởng thẳng giao vs trục tung tại điểm D có tung độ =-6 và vuông góc vs đưởng thẳng y=4x+3
e) đường thẳng cắt trục Ox tại điểm E có hoành độ =2 và vuông góc vs đường thẳng y=3x-1
f) biết tung độ giao điểm đường thẳng vs trục Oy =-5 và vuông góc vs đường thẳng y=-2x+3
g) biết hoành độ giao điểm của đường thẳng vs trục Ox =3 và hợp vs Ox 1 góc 30 độ

h) biết tung độ giao điểm đường thẳng vs trục Oy = \(\frac{-1}{2}\) và hợp vs trục Ox 1 góc 60 độ

AI ĐÓ TỐT BỤNG GIÚP MK VS MAI MK KTRA RÙI!!!

0
8 tháng 4 2021

Theo Cô si       4x+\frac{1}{4x}\ge24x+4x12  , đẳng thức xảy ra khi và chỉ khi   4x=\frac{1}{4x}=1\Leftrightarrow x=\frac{1}{4}4x=4x1=1x=41). Do đó

                                         A\ge2-\frac{4\sqrt{x}+3}{x+1}+2016A2x+14x+3+2016

                                        A\ge4-\frac{4\sqrt{x}+3}{x+1}+2014A4x+14x+3+2014

                                        A\ge\frac{4x-4\sqrt{x}+1}{x+1}+2014=\frac{\left(2\sqrt{x}-1\right)^2}{x+1}+2014\ge2014Ax+14x4x+1+2014=x+1(2x1)2+20142014

Hơn nữa    A=2014A=2014 khi và chỉ khi \left\{{}\begin{matrix}x=\dfrac{1}{4}\\2\sqrt{x}-1=0\end{matrix}\right.{x=412x1=0  \Leftrightarrow x=\dfrac{1}{4}x=41 .

Vậy  GTNN  =  2014