K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) M là trung điểm của đoạn thẳng AB, áp dụng tính chất trung điểm ta có:

\(\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right)\)

 b) G là trọng tâm của tam giác  ABC, áp dụng tính chất trọng tâm của tam giác ta có:

\(\overrightarrow {OG}  = \frac{1}{3}\left( {\overrightarrow {OA}  + \overrightarrow {OB}  + \overrightarrow {OC} } \right)\)

c) Ta có \(\overrightarrow {OA}  = \left( {{x_A};{y_A}} \right),\overrightarrow {OB}  = \left( {{x_B};{y_B}} \right),\overrightarrow {OC}  = \left( {{x_C};{y_C}} \right)\)

Suy ra:

\(\begin{array}{l}\overrightarrow {OM}  = \frac{1}{2}\left( {\overrightarrow {OA}  + \overrightarrow {OB} } \right) = \frac{1}{2}\left[ {\left( {{x_A};{y_A}} \right) + \left( {{x_B};{y_B}} \right)} \right]\\ = \left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\end{array}\)

\(\begin{array}{l}
\overrightarrow {OG} = \frac{1}{3}\left( {\overrightarrow {OA} + \overrightarrow {OB} + \overrightarrow {OC} } \right) = \frac{1}{3}\left[ {\left( {{x_A};{y_A}} \right) + \left( {{x_B};{y_B}} \right) + \left( {{x_c};{y_c}} \right)} \right]\\
= \left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)
\end{array}\)

Mà ta có tọa độ vectơ \(\overrightarrow {OM} \) chính là tọa độ điểm M, nên ta có

Tọa độ điểm M là \(\left( {{x_M};{y_M}} \right) = \left( {\frac{{{x_A} + {x_B}}}{2};\frac{{{y_A} + {y_B}}}{2}} \right)\)

Tọa độ điểm G là \(\left( {\frac{{{x_A} + {x_B} + {x_C}}}{3};\frac{{{y_A} + {y_B} + {y_C}}}{3}} \right)\)

31 tháng 7 2017

Đáp án D

9 tháng 6 2021

\(A\left(x_a;y_a\right)\Rightarrow\overrightarrow{IA}=x_a\overrightarrow{i}+y_a\overrightarrow{j}\)

\(B\left(x_b;y_b\right)\Rightarrow\overrightarrow{IB}=x_b\overrightarrow{i}+y_b\overrightarrow{j}\)(Với \(\overrightarrow{i};\overrightarrow{j}\)là hai vector đơn vị của trục Ox,Oy)

\(\Rightarrow\overrightarrow{AB}=\overrightarrow{IB}-\overrightarrow{IA}=\left(x_b-x_a\right)\overrightarrow{i}+\left(y_b-y_a\right)\overrightarrow{j}\)

Vậy tọa độ của vector AB là \(\overrightarrow{AB}=\left(x_b-x_a;y_b-y_a\right).\)

NV
23 tháng 6 2020

\(\left\{{}\begin{matrix}x+y=2\\xy\left(x+y\right)=2m^2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x+y=2\\xy=m^2\end{matrix}\right.\)

Theo Viet đảo; x và y là nghiệm của: \(t^2-2t+m^2=0\) (1)

Để hệ có nghiệm \(\Leftrightarrow\) (1) có nghiệm

\(\Leftrightarrow\Delta'=1-m^2\ge0\Rightarrow-1\le m\le1\)

\(\overrightarrow{AB}=\left(4;-2\right)=2\left(2;-1\right)\Rightarrow\) đường thẳng AB nhận \(\left(1;2\right)\) là 1 vtpt

Phương trình AB: \(1\left(x+3\right)+2\left(y-5\right)=0\Leftrightarrow x+2y-7=0\)

Tọa độ I là nghiệm: \(\left\{{}\begin{matrix}2x-y-1=0\\x+2y-7=0\end{matrix}\right.\) \(\Rightarrow I\left(\frac{9}{5};\frac{13}{5}\right)\)

\(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{IA}=\left(-\frac{24}{5};\frac{12}{5}\right)=6\left(-\frac{4}{5};\frac{2}{5}\right)\\\overrightarrow{IB}=\left(-\frac{4}{5};\frac{2}{5}\right)\end{matrix}\right.\) \(\Rightarrow\overrightarrow{IA}=6\overrightarrow{IB}\Rightarrow\frac{IA}{IB}=6\)

6 tháng 4 2017

\(\left\{{}\begin{matrix}2x-\left(m^2+m+1\right)y=-m^2-9\left(1\right)\\m^4x+\left(2m^2+1\right)y=1\left(2\right)\end{matrix}\right.\)

rút x từ (1) thế vào (2)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\left(3\right)\\m^4\left[\dfrac{\left(m^2+m+1\right)y-m^2-9}{2}\right]+\left(2m^2+1\right)y=1\left(4\right)\end{matrix}\right.\)

\(\left(4\right)\Leftrightarrow m^4\left(m^2+m+1\right)y-m^4\left(m^2+9\right)+2\left(2m^2+1\right)y=2\)

\(\Leftrightarrow\left[m^4\left(m^2+m+1\right)+4m^2+2\right]y=m^4\left(m^2+9\right)+2\)

\(\Leftrightarrow Ay=B\)

Taco

\(\left\{{}\begin{matrix}m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall m\in R\\4m^2+2>0\forall m\in R\\m^4\left(m^2+9\right)>0\forall m\in R\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}A>0\forall m\in R\\B>0\forall m\in R\end{matrix}\right.\)

\(\Rightarrow y>0\forall m\in R\)

Kết luận không có m thủa mãn

18 tháng 7 2017

Phương trình tổng quát \(\Delta\):

\(\dfrac{x-2}{2}=\dfrac{y-3}{1}\)=> x-2y+4=0

a. Vì M \(\in\) \(\Delta\)=> M (2y-4;y)

Theo giả thiết, MA=5 <=> \(\sqrt{(-2y+4)^{2}+(1-y)^{2}}\)=5

<=> \(5y^2-18y-8=0\)

<=>y=4 và y=\(\dfrac{-2}{5}\)

Vậy M1(4;4) và M2(\(\dfrac{-24}{5};\dfrac{-2}{5}\))

b. Gọi I là tọa độ giao điểm của đường thẳng \(\Delta\)với đường thẳng (d): x+y+1=0

Ta có hệ phương trình:

\(\begin{cases} x-2y+4=0\\ x+y+1=0 \end{cases}\)

\(\begin{cases} x=-2\\ y=1 \end{cases}\)

=> I(-2;1) là giao điểm của đường thẳng \(\Delta\)với đường thẳng d

c. Nhận thấy, điểm A\(\notin\)\(\Delta\)

Để AM ngắn nhất <=> M là hình chiếu của A trên đường thẳng \(\Delta\)

Vì M\(\in\Delta\)=> M(2y-4;y)

Ta có: Vectơ chỉ phương của \(\overrightarrow{AM}\)\(\overrightarrow{u}\)(2;1)

\(\overrightarrow{AM}\) (2y-4;y-1)

Vì A là hình chiếu của A trên \(\Delta\)nên \(\overrightarrow{AM}\)\(\perp\Delta\)

<=> \(\overrightarrow{AM}\)\(\perp\overrightarrow{u}\)

<=> \(\begin{matrix}\overrightarrow{AM}&\overrightarrow{u}\end{matrix}\) =0

<=> 2(2y-4)+(y-1)=0

<=> 5y-9=0

<=> y= \(\dfrac{9}{5}\)

=> B (\(\dfrac{-2}{5}\);\(\dfrac{4}{5}\))

AH
Akai Haruma
Giáo viên
16 tháng 10 2020

Lời giải:

TXĐ: $x\neq -1$

Bài toán tương đương với chứng minh PT $2x+\frac{x^2-x+1}{x+1}=3$ có 2 nghiệm phân biệt.

Ta có:

$2x+\frac{x^2-x+1}{x+1}=3$

$\Rightarrow 2x^2+2x+x^2-x+1=3x+3$

$\Leftrightarrow 3x^2-2x-2=0$

Dễ thấy $3.(-1)^2-2(-1)-2\neq 0$ và $\Delta'=1+6=7>0$ nên PT $2x+\frac{x^2-x+1}{x+1}=3$ có 2 nghiệm pb khác $-1$

Ta có đpcm.