K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
4 tháng 6 2020

d1 song song d2 khi:

\(\left\{{}\begin{matrix}m\ne0\\\frac{1}{m}=\frac{2m-1}{6}\ne\frac{m}{-3}\end{matrix}\right.\)

\(\frac{1}{m}=\frac{2m-1}{6}\Rightarrow2m^2-m-6=0\)

\(\Rightarrow\) Theo Viet \(m_1m_2=\frac{-6}{2}=-3\)

NV
21 tháng 5 2020

\(d_1\) nhận \(\left(m;1\right)\) là 1 vtpt

\(d_2\) nhận \(\left(1;-2\right)\) là 1 vtpt

Để \(d_1\) song song \(d_2\)

\(\Leftrightarrow\frac{m}{1}=\frac{1}{-2}\ne\frac{9}{m}\Rightarrow m=-\frac{1}{2}\)

NV
20 tháng 5 2020

\(d_1\) nhận \(\left(3;4\right)\) là 1 vtpt

\(d_2\) nhận \(\left(a;-2\right)\) là 1 vtcp \(\Rightarrow\) nhận \(\left(2;a\right)\) là 1 vtpt

Do đó ta có:

\(\frac{\left|3.2+4.a\right|}{\sqrt{3^2+4^2}.\sqrt{4+a^2}}=cos45^0=\frac{\sqrt{2}}{2}\)

\(\Leftrightarrow\frac{\left|4a+6\right|}{5\sqrt{a^2+4}}=\frac{\sqrt{2}}{2}\Leftrightarrow\sqrt{2}\left(4a+6\right)=5\sqrt{a^2+4}\)

\(\Leftrightarrow2\left(4a+6\right)^2=25\left(a^2+4\right)\)

\(\Leftrightarrow7a^2+96a-28=0\)

\(\Rightarrow a_1+a_2=-\frac{96}{7}\) (theo Viet)

NV
21 tháng 5 2020

\(d_1\) nhận \(\left(2;-m\right)\) là 1 vtpt

\(d_2\) nhận \(\left(-1;3\right)\) là 1 vtcp nên nhận \(\left(3;1\right)\) là 1 vtpt

Để 2 đường thẳng vuông góc

\(\Leftrightarrow2.\left(-1\right)+\left(-m\right).3=0\Rightarrow m=-\frac{2}{3}\)

NV
8 tháng 6 2020

Gọi \(A\left(a;1-a\right)\) ; \(B\left(b;2b-1\right)\) \(\Rightarrow\left\{{}\begin{matrix}\overrightarrow{MA}=\left(a-1;2-a\right)\\\overrightarrow{MB}=\left(b-1;2b\right)\end{matrix}\right.\)

\(2\overrightarrow{MA}+\overrightarrow{MB}=0\Leftrightarrow\left(2a-2;4-2a\right)+\left(b-1;2b\right)=\left(0;0\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2a-2+b-1=0\\4-2a+2b=0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}2a+b=3\\-2a+2b=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}a=\frac{5}{3}\\b=-\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow A\left(\frac{5}{3};-\frac{2}{3}\right);B\left(-\frac{1}{3};-\frac{5}{3}\right)\) \(\Rightarrow\overrightarrow{AB}=\left(2;1\right)\)

Phương trình AB:

\(1\left(x-\frac{5}{3}\right)-2\left(y+\frac{2}{3}\right)=0\Leftrightarrow x-2y-3=0\)

NV
25 tháng 4 2020

a. Tọa độ A thỏa mãn:

\(4-3t+2\left(-1+2t\right)-1=0\Rightarrow t=-1\)

\(\Rightarrow A\left(7;-3\right)\)

b. d1 nhận \(\left(-3;2\right)=-1\left(3;-2\right)\) là 1 vtcp nên đường thẳng d nhận \(\left(2;3\right)\) là 1 vtcp và \(\left(3;-2\right)\) là 1 vtpt

Phương trình tham số d: \(\left\{{}\begin{matrix}x=7+2t\\y=-3+3t\end{matrix}\right.\)

Pt tổng quát:

\(3\left(x-7\right)-2\left(y+3\right)=0\Leftrightarrow3x-2y-27=0\)

Đường thẳng d2 nhận \(\left(1;2\right)\) là 1 vtpt nên d3 nhận \(\left(1;2\right)\) là 1 vtpt và \(\left(2;-1\right)\) là 1 vtcp

Phương trình tham số d3: \(\left\{{}\begin{matrix}x=7+2t\\y=-3-t\end{matrix}\right.\)

Pt tổng quát:

\(1\left(x-7\right)+2\left(y+3\right)=0\Leftrightarrow x+2y-1=0\)

NV
1 tháng 5 2020

1.

d1 nhận \(\left(m;1\right)\) là 1 vtpt

d2 nhận \(\left(1;m\right)\) là 1 vtpt

Để 2 đường thẳng cắt nhau

\(\Leftrightarrow m^2\ne1\Rightarrow m\ne\pm1\)

2.

d1 nhận \(\left(m;1\right)\) là 1 vtpt

d2 nhận \(\left(1;m\right)\) là 1 vtpt

Để 2 đường thẳng song song hoặc trùng nhau

\(\Rightarrow m^2=1\Rightarrow m=\pm1\)

Để 2 đường thẳng song song \(\Rightarrow m=-1\)

7. Bạn viết đề ko đúng, nhìn đáp án B là biết bạn viết thiếu

NV
21 tháng 5 2020

Hai đường thẳng có 2 vtpt là \(\left(2;m^2+1\right)\)\(\left(1;m\right)\)

Để 2 đường thẳng song song

\(\Leftrightarrow\frac{1}{2}=\frac{m}{m^2+1}\Leftrightarrow m^2+1=2m\)

\(\Leftrightarrow\left(m-1\right)^2=0\Rightarrow m=1\)

NV
22 tháng 5 2020

\(d_1\) nhận \(\left(2;-3\right)\) là 1 vtpt

\(d_2\) nhận \(\left(-3;-4m\right)\) là 1 vtcp nên nhận \(\left(4m;-3\right)\) là 1 vtpt

Để 2 đường thẳng vuông góc

\(\Leftrightarrow2.4m+\left(-3\right).\left(-3\right)=0\Rightarrow m=-\frac{9}{8}\)

7 tháng 8 2019

Không biết quá trình tính toán có bị sai chỗ nào không nữa :v Hỏi đáp ToánHỏi đáp Toán

8 tháng 8 2019

Cảm ơn bn Nguyễn Minh Hùng nhaaa. Bn làm đúng r, chắc đề có vấn đề =))