Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(f\left(x\right)-g\left(x\right)=5x^2-2x+5-\left(5x^2-6x-\frac{1}{3}\right)\)
= \(5x^2-2x+5-5x^2+6x+\frac{1}{3}\)
=\(4x+\frac{16}{3}\)
3) tìm m để x = -1 là nghiệm của đa thức M(x) = x^2 - mx +2
\(\Rightarrow M\left(x\right)=x^2-mx+2\)
\(\Leftrightarrow\left(-1\right)^2-m\left(-1\right)+2=0\)
\(\Leftrightarrow1-m\left(-1\right)=-2\)
\(\Leftrightarrow m\left(-1\right)=3\)
\(\Leftrightarrow m=-3\)
vậy với m = -3 thì x= -1 là nghiệm của đa thức M(x)
4) \(K\left(x\right)=a+b\left(x-1\right)+c\left(x-1\right)\left(x-2\right)\)
\(\Leftrightarrow K\left(1\right)=a+b\left(1-1\right)+c\left(1-1\right)\left(1-2\right)=1\)
\(\Leftrightarrow a=1\)
\(\Leftrightarrow K\left(2\right)=a+b\left(2-1\right)+c\left(2-1\right)\left(2-2\right)=3\)
\(\Leftrightarrow K\left(2\right)=a+b=3\)
\(\Leftrightarrow K\left(0\right)=a+b\left(0-1\right)+c\left(0-1\right)\left(0-2\right)=5\)
\(\Leftrightarrow a+\left(-b\right)+c2=5\)
ta có \(\hept{\begin{cases}a=1\\a+b=3\\a+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\1+b=3\\1+\left(-b\right)+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\-1+c2=5\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c2=6\end{cases}}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=3\end{cases}}\)
vậy \(a=1;b=2;c=3\)
1. a) Sắp xếp :
f(x) = -x5 - 7x4 - 2x3 + x4 + 4x + 9
g(x) = x5 + 7x4 + 2x3 + 2z2 - 3x - 9
b) h(x) = f(x) + g(x)
= -x5 - 7x4 - 2x3 + x2 + 4x + 9 + x5 + 7x4 + 2x3 + 2x2 - 3x - 9
= ( x5 - x5 ) + ( 7x4 - 7x4 ) + ( 2x3 - 2x3 ) + ( 2x2 + x2 ) - 3x + ( 9 - 9 )
= 3x2- 3x
c) h(x) có nghiệm <=> 3x2 - 3x = 0
<=> 3x( x - 1 ) = 0
<=> 3x = 0 hoặc x - 1 = 0
<=> x = 0 hoặc x = 1
Vậy nghiệm của h(x) là x= 0 hoặc x = 1
2. D(x) = A(x) + B(x) - C(x)
= 6x3 + 5x2 + x3 - x2 - ( -2x3 + 4x2 )
= 6x3 + 5x2 + x3 - x2 + 2x3 - 4x2
= ( 6x3 + x3 + 2x3 ) + ( 5x2 - x2 - 4x2 )
= 9x3
b) D(x) có nghiệm <=> 9x3 = 0 => x = 0
Vậy nghiệm của D(x) là x = 0
3. M(x) = x2 - mx + 2
x = -1 là nghiệm của M(x)
=> M(-1) = (-1)2 - m(-1) + 2 = 0
=> 1 + m + 2 = 0
=> 3 + m = 0
=> m = -3
Vậy với m = -3 , M(x) có nghiệm x = -1
4. K(x) = a + b( x - 1 ) + c( x - 1 )( x - 2 )
K(1) = 1 => a + b( 1 - 1 ) + c( 1 - 1 )( 1 - 2 ) = 1
=> a + 0b + c.0.(-1) = 1
=> a + 0 = 1
=> a = 1
K(2) = 3 => 1 + b( 2 - 1 ) + c( 2 - 1 )( 2 - 2 ) = 3
=> 1 + 1b + c.1.0 = 3
=> 1 + b + 0 = 3
=> b + 1 = 3
=> b = 2
K(0) = 5 => 1 + 5( 0 - 1 ) + c( 0 - 1 )( 0 - 2 ) = 5
=> 1 + 5(-1) + c(-1)(-2) = 5
=> 1 - 5 + 2c = 5
=> 2c - 4 = 5
=> 2c = 9
=> c = 9/2
Vậy a = 1 ; b = 2 ; c = 9/2
a, P(x) + Q(x)=\(x^3-3x+x^2+1\)+\(2x^2-x^3+x-5\)
=\(\left(x^3-x^3\right)+\left(-3x+x\right)\)+\(\left(x^2+2x^2\right)+\left(1-5\right)\)=\(-2x+3x^2-4\)
P(x)-Q(x)=\(x^3-3x+x^2+1\)-\(2x^2+x^3-x+5\)=\(\left(x^3+x^3\right)+\left(-3x-x\right)\)+\(\left(x^2-2x^2\right)+\left(1+5\right)\)
=\(2x^3-4x-x^2+6\)
vậy P(x)+Q(x)=\(-2x+3x^2-4\)
P(x)-Q(x)=\(2x^3-4x-x^2+6\)
a) \(P\left(x\right)=x^3-3x+x^2+1\)
\(=x^3+x^2-3x+1\)
\(Q\left(x\right)=2x^2-x^3+x-5\)
\(-x^3+2x^2+x-5\)
\(P\left(x\right)=x^3+x^2-3x+1\)
+
\(Q\left(x\right)=-x^3+2x^2+x-5\)
___________________________________
\(P\left(x\right)+Q\left(x\right)=\) \(3x^2-2x-4\)
Vậy P(x) + Q(x) = 3x^2 - 2x - 4
\(P\left(x\right)=x^3+x^2-3x+1\)
-
\(Q\left(x\right)=-x^3+2x^2+x-5\)
____________________________________________
\(P\left(x\right)-Q\left(x\right)=\)\(2x^3-1x^2-4x+6\)
Vậy P(x) - Q(x) = 2x^3 - 1x^2 - 4x + 6
a, P(x) + Q(x) = 1x2 -2x - 4
P(x) - Q(x) = 2x3 - 3x2 - 4x + 6
b, Tự lm nhé mk chưa nghĩ ra
#Hk_tốt
#Ngọc's_Ken'z
a. P(x)+Q(x)=(x3-3x-x2+1)+(2x2-x3+x-5)
=( x3-x3) +(-x2+2x2)+(-3x+x)+(1-5)
= x2-2x-4
P(x)-Q(x)=(x3-3x-x2+1)-(2x2-x3+x-5)
= x3_3x-x2+1-2x2+x3+x+5
= ( x3+x3) +(-x2_2x2)+(-3x-x)+(1+5)
= 2x3_3x2-4x+6