K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 4 2017

a) \(A\left(x\right)=-4x^5-x^3+4x^2+5x+7+4x^5-6x^2\)

              \(=\left(-4x^5+4x^5\right)+\left(-x^3\right)+\left(4x^2-6x^2\right)+5x+7\)

              \(=\left(-x^3\right)+\left(-2x^2\right)+5x+7\)

    \(B\left(x\right)=-3x^4-4x^3+10x^2-8x+5x^3-7-8x\)

               \(=-3x^4+\left(-4x^3+5x^3\right)+10x^2+\left[-8x+\left(-8x\right)\right]+\left(-7\right)\)

               \(=-3x^4+x^3+10x^2+\left(-16x\right)+\left(-7\right)\)

b)                               \(A\left(x\right)=\left(-x^3\right)+\left(-2x^2\right)+5x+7\)

                                 \(B\left(x\right)=x^3+10x^2+\left(-16x\right)+\left(-7\right)+\left(-3x^4\right)\)

\(P\left(x\right)=A\left(x\right)+B\left(x\right)=8x^2+\left(-11x\right)+\left(-3x^4\right)\)

\(Q\left(x\right)=A\left(x\right)-B\left(x\right)=\left(-2x^3\right)+\left(-12x^2\right)+21x+14\)

c) Đặt \(P\left(x\right)=8x^2+\left(-11x\right)+\left(-3x^4\right)=0\)

Thay x=-1 vào đa thức trên, ta có: \(8.\left(-1\right)^2+\left[-11.\left(-1\right)\right]+\left[-3.\left(-1\right)^4\right]=0\)

                                            \(\Rightarrow8+11+\left(-3\right)=0\Rightarrow16=0\)(vô lí)

         Vậy -1 không là nghiệm của đa thức P(x)

11 tháng 4 2017

ai giúp mình vs

3 tháng 5 2017

a)

A(x)=(-4x5+4x5)-x3+(4x2-6x2)+5x+(9-2)

      =-x3-2x2+5x+7

B(x)=-3x4-(2x3-5x3+2x3)+10x2-(8x-8x)-7

      -3x4+x3+10x2-7

b)

A(x)=       -x3- 2x+  5x+7

B(x)=-3x4+x3+10x2         -7

P(x)=-3x4-0+8x2   +5x+0

   

A(x)=       -x3- 2x+  5x+7

B(x)=-3x4+x3+10x2         -7

 Q(x)=3x4-2x3-12x10+5x+14

c)Thay x=-1 vào đt P(x)

Ta có: P(-1)=(-3)(-1)4-8(-1)2+5(-1)

                 =-3-8+5

                 =0

CHO MIK NHA

THANK!

CHÚC PN HỌC GIỎI ^ -*

3 tháng 5 2017

A(x)=- x3  -2x2+5x+7

B(x)=- 3x4 + x3+10x2-7

P(x)=- 3x4+8x2+5x

Q(x)=3x4-2x3-12x2+5x+14

thay x=-1 vào P(x)   =>P(x)=0  => x= -1 là nghiệm của đa thức

7 tháng 8 2016

Câu 1:

a) \(P\left(x\right)=x^5+7x^4-9x^3+\left(-3x^2+x^2\right)-\frac{1}{4}x\)

\(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+\left(x^2+3x^2\right)-\frac{1}{4}\)

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

b) \(P\left(x\right)+Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)+\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)+Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=\left(x^5-x^5\right)+\left(7x^4+5x^4\right)-\left(9x^3+2x^3\right)+\left(-2x^2+4x^2\right)-\frac{1}{4}x-\frac{1}{4}\)

\(P\left(x\right)+Q\left(x\right)=12x^4-11x^3+2x^2-\frac{1}{4}-\frac{1}{4}\)

 

\(P\left(x\right)-Q\left(x\right)=\left(x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\right)-\left(-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\right)\)

\(P\left(x\right)-Q\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x+x^5-5x^4+2x^3-4x^2+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=\left(x^5+x^5\right)+\left(7x^4-5x^4\right)+\left(-9x^3+2x^3\right)-\left(2x^2+4x^2\right)-\frac{1}{4}x+\frac{1}{4}\)

\(P\left(x\right)-Q\left(x\right)=2x^5+2x^4-7x^3-6x^2-\frac{1}{4}x+\frac{1}{4}\)

c) \(P\left(x\right)=x^5+7x^4-9x^3-2x^2-\frac{1}{4}x\)

\(P\left(0\right)=0^5+7\cdot0^4-9\cdot0^3-2\cdot0^2-\frac{1}{4}\cdot0\)

\(P\left(0\right)=0\)

 

\(Q\left(x\right)=-x^5+5x^4-2x^3+4x^2-\frac{1}{4}\)

\(Q\left(0\right)=0^5+5\cdot0^4-2\cdot0^3+4\cdot0^2-\frac{1}{4}\)

\(Q\left(0\right)=-\frac{1}{4}\)

Vậy \(x=0\) là nghiệm của đa thức P(x) nhưng không là nghiệm của đa thức Q(x)

 

 

a) Ta có:

\(P\left(x\right)=5x^3+2x^4-x^2+3x^2-3x^3-x^4+1-4x^3\)

\(\Rightarrow P\left(x\right)=2x^4-x^4+5x^3-3x^3-4x^3-x^2+3x^2+1\)

\(\Rightarrow P\left(x\right)=x^4-2x^3+2x^2+1\)

a: a(x)=x^3+3x^2+5x-18

b(x)=-x^3-3x^2+2x-2

b: m(x)=a(x)+b(x)

=x^3+3x^2+5x-18-x^3-3x^2+2x-2

=7x-20

c: m(x)=0

=>7x-20=0

=>x=20/7