Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, Ta có \(Q\left(x\right)=x+1=0\Leftrightarrow x=-1\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là -1 hay
\(3\left(-1\right)^3+2\left(-1\right)^2-5\left(-1\right)+m=0\Leftrightarrow m=-4\)
b.. ta có \(Q\left(x\right)=x^2-3x+2=0\Leftrightarrow\left(x-1\right)\left(x-2\right)=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}\)
Vậy P(x) chia hết cho Q(x) khi P(x) có nghiệm là 1 và 2 hay
\(\hept{\begin{cases}2+a+b+3=0\\2.2^3+a.2^2+b.2+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a+b=-5\\4a+2b=-19\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-\frac{9}{2}\\b=-\frac{1}{2}\end{cases}}\)
2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1
Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)
\(\Leftrightarrow a=-1\)
Vậy ...
Bài 1 :
Gọi f( x ) = 2n2 + n - 7
g( x ) = n - 2
Cho g( x ) = 0
\(\Leftrightarrow\)n - 2 = 0
\(\Rightarrow\)n = 2
\(\Leftrightarrow\)f( 2 ) = 2 . 22 + 2 - 7
\(\Rightarrow\)f( 2 ) = 3
Để f( x ) \(⋮\)g( x )
\(\Rightarrow\)n - 2 \(\in\)Ư( 3 ) = { \(\pm\)1 ; \(\pm\)3 }
Ta lập bảng :
n - 2 | 1 | - 1 | 3 | - 3 |
n | 3 | 1 | 5 | - 1 |
Vậy : n \(\in\){ - 1 ; 1 ; 3 ; 5 }
Ta có: \(x^4:x^2=x^2\)
=> Đa thức thương của đa thức f(x) cho đa thức g(x) có dạng \(x^2+cx+d\)
=> \(f\left(x\right)=g\left(x\right).\left(x^2+cx+d\right)\)
=> \(x^4-3x^3+3x^2+ax+b=\left(x^2-3x+4\right)\left(x^2+cx+d\right)\)
=> \(x^4-3x^3+3x^2+ax+b=x^4+x^3\left(c-3\right)+x^2\left(d-3c+4\right)+x\left(4c-3d\right)+4d\)
=> \(\left\{{}\begin{matrix}c-3=-3\\d-3c+4=3\\4c-3d=a\\b=4d\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}c=0\\d=-1\\a=3\\b=-4\end{matrix}\right.\)
Vậy a = 3; b = -4
Ngoài cách đồng nhất hệ số như trên bạn có thể lam theo phương pháp giá trị riêng
x-3x+3x+ax+b 4 3 2 x-3x+4 2 x-1 2 x-3x+4x 4 2 _________________________ - -x+ax+b 2 -x+3x-4 2 ______________ - (a-3)x+(b+4)
\(\Rightarrow\) Để \(f_{\left(x\right)}⋮g_{\left(x\right)}\)
\(\text{thì }\Rightarrow\left\{{}\begin{matrix}\left(a-3\right)x=0\\b+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a-3=0\\b+4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}a=3\\b=-4\end{matrix}\right.\)
Vậy để \(f_{\left(x\right)}⋮g_{\left(x\right)}\) thì \(a=3;b=-4\)
Thôi làm đa thức B trước cho dễ làm:
Ta có \(B=\left(3x+1\right)^2-x\left(5x+2\right)+3\)
\(=\left(3x\right)^2+2.3.x+1+1^2-5x^2-2x+3\)
\(=9x^2+6x+1-5x^2-2x+3\)
\(=4x^2+4x+4\)
\(=4\left(x^2+x+1\right)\)
\(A=x^{2016}-x^{2013}+x^2+x+1\)
\(=x^{2013}\left(x^3-1\right)+\left(x^2+x+1\right)\)
\(=x^{2013}\left(x-1\right)\left(x^2+x+1^2\right)+\left(x^2+x+1\right)\)
\(=\left(x^2+x+1\right)\text{[}x^{2013}\left(x-1\right)+\text{1]}\)
\(=4\left(x^2+x+1\right)\text{[}\frac{x^{2013}\left(x-1\right)+1}{4}\text{]}\)
Rồi bạn làm các bước còn lại nhen :v