K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 7 2020

*Tính M(x) - N(x)

M(x)            = -x3 + 2,5x2 - 0,5x - 1

N(x)            = -x3 + 2,5x2 + 2x   - 6

------------------------------------

M(x) - N(x) =                    -2,5x + 5

=> M(x) - N(x) = A(x) = -2,5x + 5

Để đa thức A(x) có nghiệm => -2,5x + 5 = 0

=> -2,5x = -5

=> 2,5x = 5

=>  x = 2

Tính M(x) + N(x)  

M(x)          =   -x3 + 2,5x2 - 0,5x - 1

N(x)          = -x3 + 2,5x2 + 2x - 6 

---------------------------------------------

M(x) + N(x) = -2x3 + 5x2 + 1,5x - 7

=> M(x) + N(x) = B(x) = -2x3 + 5x2 + 1,5x - 7

Bậc của đa thức B(x) là 3

P/S : Cái dấu chấm đó là nhân hay phẩy?

1 tháng 4 2021

A(x) ở đâu

 tìm A(x) biết A(x)=M(x)-N(x) ko thấy à 

Cái chỗ 1;1/2 là gì vậy bạn?

; là ngăn cách P vs M

 

7 tháng 5 2018

a) N(x)= -2x3 + 5x2 -12 +2x

M(x)= -x3 + 2,5x2 - 0.5x -1

-

N(x)= -2x3 + 5x2 + 2x - 12

=

A(x)=M(x) - N(x)= x3 - 2,5x2 -2,5x +11

b) M(x) = -x3 + 2,5x2 - 0,5x -1

+

N(x) = -2x3 + 5x2 + 2x -12

=

B(x)= M(x) + N(x) = -3x3 + 7,5x2 + 1,5x -13

⇒ Bậc của B(x) là 6

Bài 3: 

a) Đặt f(x)=0

\(\Leftrightarrow x^2-4x+3=0\)

\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)

b) Đặt f(x)=0

\(\Leftrightarrow x^2-7x+12=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\)

Bài 3:

c) Đặt f(x)=0

\(\Leftrightarrow x^2+2x+1=0\)

\(\Leftrightarrow\left(x+1\right)^2=0\)

\(\Leftrightarrow x+1=0\)

hay x=-1

d) Đặt f(x)=0

\(\Leftrightarrow x^4+2=0\)

\(\Leftrightarrow x^4=-2\)(Vô lý)

28 tháng 1 2020

a) \(F\left(x\right)=\left(2x^2-4x+5\right)-\left(x^2-6\right)+2x-3\)

\(=2x^2-4x+5-x^2+6+2x-3\)

\(=\left(2x^2-x^2\right)+\left(2x-4x\right)+\left(5+6-3\right)\)

\(=x^2-2x+8\)

Hệ số tự do của đa thức F(x) là: 8

Hệ số bậc 1 của đa thức F(x) là: -2

b) \(F\left(x\right)=x^2-2x+8\)\(G\left(x\right)=-x^2-2x-9\)

+) \(\Rightarrow F\left(x\right)+G\left(x\right)=\left(x^2-2x+8\right)+\left(-x^2-2x-9\right)\)

\(=\left(x^2-x^2\right)+\left(-2x-2x\right)+\left(8-9\right)=-4x-1\)

Vậy \(M\left(x\right)=-4x-1\)

+) và \(F\left(x\right)-G\left(x\right)=\left(x^2-2x+8\right)-\left(-x^2-2x-9\right)\)

\(=\left(x^2+x^2\right)+\left(-2x+2x\right)+\left(8+9\right)=2x^2+17\)

Vậy \(N\left(x\right)=2x^2+17\)

c)

+) M(x) có nghiệm khị và chỉ khi M(x) = 0

\(\Leftrightarrow-4x-1=0\Leftrightarrow-4x=1\Leftrightarrow x=\frac{-1}{4}\)

Vậy M(x) có 1 nghiệm là \(\frac{-1}{4}\)

+) N(x) có nghiệm khị và chỉ khi N(x) = 0

\(\Leftrightarrow2x^2+17=0\)

Mà \(2x^2+17\ge17\left(dox^2\ge0\right)\)

Nên N(x) vô nghiệm

d) F(x) = x2 - 3\(\Leftrightarrow x^2-2x+8=x^2-3\Leftrightarrow-2x=-11\)

\(\Leftrightarrow x=\frac{11}{2}\)

Vậy \(x=\frac{11}{2}\)thì  F(x) = x2 - 3

1 tháng 5 2018

1. Ta có :

f(x) = ( m - 1 ) . 12 - 3m . 1 + 2 = 0

f(x) = m - 1 - 3m + 2 = -2m + 1 = 0

\(\Rightarrow m=\frac{1}{2}\)

1 tháng 5 2018

2.

a) M(x) = -2x2 + 5x = 0 

\(\Rightarrow-2x^2+5x=x.\left(-2x+5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}x=0\\-2x+5=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=0\\x=\frac{5}{2}\end{cases}}\)

b) N(x) = x . ( x - 1/2 ) + 2 . ( x - 1/2 ) = 0

N(x) = ( x + 2 ) . ( x - 1/2 ) = 0 

\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-\frac{1}{2}=0\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x=-2\\x=\frac{1}{2}\end{cases}}\)

c) P(x) = x2 + 2x + 2015 = x2 + x + x + 1 + 2014 = x . ( x + 1 ) + ( x + 1 ) + 2014 = ( x + 1 ) . ( x + 1 ) + 2014 = ( x + 1 )2 + 2014

vì ( x + 1 )2 + 2014 > 0 nên P(x) không có nghiệm