Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Ta có \(a\left(x\right)=x^5+3x^4-2x^3-9x^2+11x-6\)
\(b\left(x\right)=x^5+3x^4-2x^3-10x^2+9x-8\)
\(\Rightarrow c\left(x\right)=a\left(x\right)-b\left(x\right)=x^2+2x+2\)
b. \(c\left(x\right)=2x+1\Rightarrow x^2+2x+2=2x+1\Rightarrow x^2+1=0\)(vô lí )
Vậy không tồn tại x để \(c\left(x\right)=2x+1\)
c. Gỉa sử \(x^2+2x+2=2012\Rightarrow x^2+2x-2010=0\)
\(\Rightarrow\orbr{\begin{cases}x_1=-1+\sqrt{2011}\\x_2=-1-\sqrt{2011}\end{cases}}\)
Ta thấy \(x_1;x_2\in R\)
Vậy c(x) không thể nhận giá trị bằng 2012 với \(x\in Z\)
a. \(c\left(x\right)=x^5-2x^3+3x^4-9x^2+11x-6-\left(3x^4+x^5-2x^3-8-10x^2+9x\right)\)
\(c\left(x\right)=x^2+2x+2\)
b. Để c(x)=2x+2 thì \(x^2=0\Rightarrow x=0\)
c. Với c(x)=2012, ta có:
\(c\left(x\right)=x^2+2x+2=\left(x+1\right)^2+1=2012\)
\(\Leftrightarrow\left(x+1\right)^2=2011\Rightarrow x+1\notin Z\Rightarrow x\notin Z\)
Ta có :
\(B\left(x\right)=3x^4+x^5-2\left(x^3+4\right)-10x^2+9x\)
\(=x^5+3x^4-2x^3-10x^2+9x-8\)
\(C\left(x\right)=A\left(x\right)-B\left(x\right)\)
\(=x^5+3x^4-2x^3-9x^2+11x-6-\left(x^5+3x^4-2x^3-10x^2+9x-8\right)\)
\(=x^5+3x^4-2x^3-9x^2+11x-6-x^5-3x^4+2x^3+10x^2-9x+8\)
\(=x^2-2x+2\)
\(P\left(x\right)=x^5+3x^4-2x^3-9x^2+11x-6\)
\(Q\left(x\right)=x^5+3x^4-2x^3-10x^2+9x-8\)
\(\Rightarrow H\left(x\right)=x^2+2x+2=\left(x^2+2x+1\right)+1=\left(x+1\right)^2+1\)
Với \(x\inℤ\)thì \(\left(x+1\right)^2\inℕ\)
Ta có:\(2008=2007-1\)
Mà:2007 không phải là số chính phương
Nên \(H\left(x\right)\ne2008\)với mọi x