Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(p=\left(x-1\right)\left(x+7\right)\left(x+2\right)\left(x+4\right)+2075\)
\(=\left(x^2+6x-7\right)\left(x^2+6x+8\right)+2075\)
\(=\left(x^2+6x+2-9\right)\left(x^2+6x+2+6\right)+2075\)
\(=\left(x^2+6x+2\right)^2-3\left(x^2+6x+2\right)+2021\)
\(\Rightarrow p\) chia q dư \(2021\)
\(P=\left(x-1\right)\left(x+2\right)\left(x+4\right)\left(x+7\right)+2069\)
\(=\left[\left(x-1\right)\left(x+7\right)\right]\left[\left(x+2\right)\left(x+4\right)\right]+2069\)
\(=\left(x^2+6x-7\right)\left(x^2+6x+8\right)+2069\)
Đặt \(x^2+6x+2=a\), ta có:
\(P=\left(a-9\right)\left(a+6\right)+2069\)
\(=a^2-3a-54+2069\)
\(=a^2-a+2015\)
=> P chia Q dư 2015
Ta có : \(P=\left(x-1\right)\left(x+2\right)\left(x+4\right)\left(x-7\right)-2069\)
\(=\left(x^2+x-2\right)\left(x^2-3x-28\right)-2069\)
\(=x^4-2x^3-33x^2-22x-2013\)
Thực hiện phép chia đa thức x4 - 2x3 - 33x2 - 22x - 2013 cho đa thức x2 - 6x + 2 ta có:
\(x^4-2x^3-33x^2-22x-2013=\left(x^2-6x+2\right)\left(x^2+4x-11\right)-96x+2013\)
Vậy đa thức dư là: 2013 - 96x.
2x^3+3x^2-x+a x^2+x-1 2x+1 2x^3+x^2 - - 2x^2-x+a 2x^2+x -2x+a -2x-1 - a+1
Để \(A\left(x\right)⋮B\left(x\right)\Leftrightarrow a+1=0\)
\(\Leftrightarrow a=-1\)
Vậy ...
\(P=\left(x-1\right)\left(x+2\right)\left(x+4\right)\left(x+7\right)+2069\)
\(=\left(x-1\right)\left(x+7\right)\left(x+2\right)\left(x+4\right)+2069\)
\(=\left(x^2+6x-7\right)\left(x^2+6x+8\right)+2069\)
\(=\left(x^2+6x+2-9\right)\left(x^2+6x+2+6\right)+2069\)
Mà \(x^2+6x+2=Q\)
\(=>P=\left(Q-9\right)\left(Q+6\right)+2069=Q^2-3Q-54+2069\)
\(=Q^2-3Q+2015=Q\left(Q-3\right)+2015\)
Dễ thấy \(Q\left(Q-3\right)=BS\left(Q\right)\)
\(=>P\)chia Q có số dư là 2015
Vậy................