Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(P\left(x\right)=2x^3-2x+x^2-x^3+3x+2\)
\(=\left(2x^3-x^3\right)+x^2+\left(-2x+3x\right)+2\)
\(=x^3+x^2+x+2\)
\(Q\left(x\right)=3x^3-4x^2+3x-4x-4x^3+5x^2+1\)
\(=\left(3x^3-4x^3\right)+\left(-4x^2+5x^2\right)+\left(3x-4x\right)+1\)
\(=-x^3+x^2-x+1\)
b) \(M\left(x\right)=P\left(x\right)+Q\left(x\right)\)
\(=\left(x^3+x^2+x+2\right)+\left(-x^3+x^2-x+1\right)\)
\(=2x^2+3\)
\(N\left(x\right)=P\left(x\right)-Q\left(x\right)\)
\(=\left(x^3+x^2+x+2\right)-\left(-x^3+x^2-x+1\right)\)
\(=2x^3+2x+1\)
c) \(M\left(x\right)=2x^2+3>0\)vì \(2x^2\ge0,3>0\)do đó đa thức \(M\left(x\right)\)vô nghiệm.
Mk chỉ ghi kết quả thôi nha
a, rút gọn và sắp xếp lun:
M(x)= x3+ 3x2- 4x - 6
N(x)= -x3 - 2x2 + 4x + 2
b, tính:
Q(x) = M(x)+N(x) = x2 - 4
c, sao lại tìm nghiệm của H(x)???
a,f(x)=5x3 - 3x +7-x2-x=5x3-x2-4x+7
g(x)=-5x3+4x-3+2x+x2-2=-5x3+x2+6x-5
b, f(x)=5x3-x2-4x+7
g(x)=-5x3+x2+6x-5
h(x)=f(x)+g(x)=0 +0+2x+2
c,Xét h(x)=2x+2=0
=>2x=-2
=>x=-1
Vậy x=-1 là nghiệm của h(x)
a) P(x) = 2x3 - 2x - x2 - x3 + 3x + 2
=> P(x) = (2x3 - x3) + (-2x + 3x) - x2 + 2
=> P(x) = x3 + x - x2 + 2
Sắp xếp : P(x) = x3 - x2 + x + 2
Q(x) = -4x3 + 5x2 - 3x + 4x + 3x3 - 4x2 + 1
=> Q(x) = (-4x3 + 3x3) + (5x2 - 4x2) + (-3x + 4x) + 1
=> Q(x) = -x3 + x2 + x + 1
Sắp xếp : Q(x) = -x3 + x2 + x + 1
b) H(x) = P(x) + Q(x)
=> H(x) = (x3 + x - x2 + 2) + (-x3 + x2 + x + 1)
=> H(x) = x3 + x - x2 + 2 - x3 + x2 +x + 1
=> H(x) = (x3 - x3) + (x + x) + (-x2 + x2) + (2 + 1)
=> H(x) = 2x + 3
K(x) = P(x) - Q(x)
=> K(x) = (x3 + x - x2 + 2) - (-x3 + x2 + x + 1)
=> K(x) = x3 + x - x2 + 2 + x3 - x2 - x - 1
=> K(x) = (x3 + x3) + (x - x) + (-x2 - x2) + (2 - 1)
=> K(x) = 2x3 - 2x2 + 1
c) Q(2) = -23 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1( m k bt (-2)3 hay -23 nx nên thông cảm))
P(-1) = (-1)3 - (-1)2 + (-1) + 2 = -1 - 1 - 1 + 2 = -1
d) Để H(x) có nghiệm => 2x + 3 = 0 => 2x = -3 => \(x=-\frac{3}{2}\)
Vậy x = -3/2 là nghiệm của đa thức H(x)
P/s : K chắc :))
a) Mình làm tắt
P(x) = x3 - x2 + x + 2
Q(x) = -x3 + x2 + x + 1
b) H(x) = P(x) + Q(x)
= x3 - x2 + x + 2 - x3 + x2 + x + 1
= 2x + 3
K(x) = P(x) - Q(x)
= x3 - x2 + x + 2 - ( -x3 + x2 + x + 1 )
= x3 - x2 + x + 2 + x3 - x2 - x - 1
= 2x3 - 2x2 + 1
c) Q(2) = -(2)3 + 22 + 2 + 1 = -8 + 4 + 2 + 1 = -1
P(-1) = 13 - 12 + 1 + 2 = 1 - 1 + 1 + 2 = 3
d) H(x) = 2x + 3
H(x) = 0 <=> 2x + 3 = 0
<=> 2x = -3
<=> = -3/2
Vậy nghiệm của H(x) = -3/2
a) Sắp xếp các hạng tử của đa thức M(x) theo lũy thừa giảm của biến
M(x)=2x4−x4+5x3−x3−4x3+3x2−x2+1
=x4+2x2+1
b) M(1)=14+2.12+1=4
M(−1)=(−1)4+2.(−1)2+1=4
c) Ta có: M(x)=x4+2x2+1
Vì giá trị của x4 và 2x2 luôn lớn hơn hay bằng 0 với mọi x nên x4 +2x2 +1 > 0 với mọi x tức là M(x) ≠ 0 với mọi x. Vậy M(x) không có nghiệm.
a) P(x) = 5x4 + 2x2 - 3x3 - 4x4+ 3x3 - x + 5
= ( 5x4 - 4x4 ) + ( 3x3 - 3x3 ) + 2x2 -x + 5
= x4 +2x2 - x +5
Q(x) = x - 5x3 - x2 - x4 + 5x3 - x2 + 3x - 1
= -x4 + ( 5x3 - 5x3 ) - ( x2 + x2 ) + 3x -1
= -x4 - 2x2 + 3x -1
b) P(x) + Q(x) = (x4 + 2x2 - x +5) + (-x4 - 2x2 + 3x -1)
= x4 + 2x2 - x +5 - x4 - 2x2 + 3x -1
= ( x4 -x4 ) + ( 2x2 - 2x2 ) + ( 3x - x ) + ( 5 - 1 )
= 2x + 4
c) Để đa thức có nghiệm thì A(x) = 0
hay P(x) + Q(x) = 0
2x + 4 = 0
2x = -4
x = -4 : 2 = -2
Vậy x = -2 là nghiệm của đa thức A(x)
tick cho mk nha các bn
a )\(P\left(x\right)=5x^4+2x^2-3x^3-4x^4+3x^3-x+5\)
\(=x^4+2x^2-x+5\).
\(Q\left(x\right)=x-5x^3-x^2-x^4+5x^3-x^2+3x-1\)
\(=-x^4-2x^2+4x-1\)
b ) \(P\left(x\right)+Q\left(x\right)=x^4+2x^2-x+5-x^4-2x^2+4x-1=3x+4\)
c ) \(Ax=3x+4=0\)
\(\Leftrightarrow x=-\dfrac{4}{3}\)
Vậy nghiệm của \(A\left(x\right)=-\dfrac{4}{3}\)
a) dễ tự làm
b) A(x) có bậc 6
hệ số: -1 ; 5 ; 6 ; 9 ; 4 ; 3
B(x) có bậc 6
hệ số: 2 ; -5 ; 3 ; 4 ; 7
c) bó tay
d) cx bó tay
a) P(x) =5x3 - 5x + 9 +x
=5x3 + (-5x + x) + 9
= 5x3 - 4x + 9
Sắp xếp: tương tự như trên.
Mk đang bận chút mk làm tiếp.
a) Ta có: \(M\left(x\right)=4x^2-4x-3x^3-8\)
\(=-3x^3+4x^2-4x-8\)
Ta có: \(N\left(x\right)=2+3x^3+x-4x^2\)
\(=3x^3-4x^2+x+2\)
a. M(x) = -3x3 - 4x2 - 4x - 8
N(x) = 3x3 - 4x2 + x + 2