Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(P=12\)
b/ \(Q=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c/ Ta có:
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Dấu = xảy ra khi x = 3 (thỏa tất cả các điều kiện )
a. Thay x = 3 vào biểu thức P ta được :
\(p=\frac{x+3}{\sqrt{x}-2}=\frac{9+3}{\sqrt{9}-2}=12\)
b, \(Q=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{x-4}\)
\(=\frac{\sqrt{x}-1}{\sqrt{x}+2}+\frac{5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x-3\sqrt{x}+2+5\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{x+2\sqrt{x}}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\)
\(=\frac{\sqrt{x}}{\sqrt{x}-2}\)
c, Ta có :
\(\frac{P}{Q}=\frac{\frac{x+3}{\sqrt{x}-2}}{\frac{\sqrt{x}}{\sqrt{x}-2}}=\frac{x+3}{\sqrt{x}}\ge\frac{2\sqrt{3x}}{\sqrt{x}}=2\sqrt{3}\)
Vậy GTNN \(\frac{P}{Q}=2\sqrt{3}\) khi và chỉ khi \(x=3\)
a: \(M=\left(\dfrac{-\left(\sqrt{x}+2\right)}{\sqrt{x}-2}+\dfrac{\sqrt{x}-2}{\sqrt{x}+2}-\dfrac{4x}{x-4}\right)\cdot\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\)
\(=\dfrac{-x-4\sqrt{x}-4+x-4\sqrt{x}+4-4x}{x-4}\cdot\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\)
\(=\dfrac{-4x-8\sqrt{x}}{x-4}\cdot\dfrac{-\left(\sqrt{x}-2\right)}{\sqrt{x}+3}\)
\(=\dfrac{4\sqrt{x}\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}{\left(x-4\right)\left(\sqrt{x}+3\right)}=\dfrac{4\sqrt{x}}{\sqrt{x}+3}\)
b: \(x=\sqrt{5}-1-\left(\sqrt{5}-2\right)=\sqrt{5}-1-\sqrt{5}+2=1\)
Thay x=1 vào M, ta được:
\(M=\dfrac{4}{1+3}=\dfrac{4}{4}=1\)
c: Để M là số nguyên thì \(4\sqrt{x}-12+12⋮\sqrt{x}+3\)
\(\Leftrightarrow\sqrt{x}+3\in\left\{1;-1;2;-2;3;-3;4;-4;6;-6;12;-12\right\}\)
\(\Leftrightarrow\sqrt{x}\in\left\{0;3;9\right\}\)
hay \(x\in\left\{0;9;81\right\}\)
a, Ta có :
\(P=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{2x+\sqrt{x}-4\sqrt{x}-2}{\sqrt{x}-2}\)sử dụng tam thức bậc 2 khai triển biểu thức trên tử nhé
\(=\frac{\sqrt{x}\left(2\sqrt{x}+1\right)-2\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=\frac{\left(2\sqrt{x}+1\right)\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)
\(Q=\frac{\left(\sqrt{x}\right)^3-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}\)
\(=\frac{\left(\sqrt{x}+2\right)\left(x-1\right)}{\sqrt{x}+2}=x-1\)
b, Ta có : \(P=Q\)hay \(2\sqrt{x}+1=x-1\Leftrightarrow-x+2\sqrt{x}+2=0\)
\(\Leftrightarrow x-2\sqrt{x}-2=0\Leftrightarrow x-2\sqrt{x}+1-3=0\)
\(\Leftrightarrow\left(\sqrt{x}-1\right)^2-3=0\Leftrightarrow\left(\sqrt{x}-1-\sqrt{3}\right)\left(\sqrt{x}-1+\sqrt{3}\right)=0\)
TH1 : \(\sqrt{x}=1+\sqrt{3}\Leftrightarrow x=\left(1+\sqrt{3}\right)^2=1+2\sqrt{3}+3=4+2\sqrt{3}\)
TH2 : \(\sqrt{x}=1-\sqrt{3}\Leftrightarrow x=\left(1-\sqrt{3}\right)^2=1-2\sqrt{3}+3=4-2\sqrt{3}\)
Vậy \(x=4+2\sqrt{3};x=4-2\sqrt{3}\)thì P = Q
んuリ イ giải pt vô tỉ không xét ĐK là tai hại :))
\(P=\frac{2x-3\sqrt{x}-2}{\sqrt{x}-2}=\frac{2x-4\sqrt{x}+\sqrt{x}-2}{\sqrt{x}-2}\)
\(=\frac{2\sqrt{x}\left(\sqrt{x}-2\right)+\left(\sqrt{x}-2\right)}{\sqrt{x}-2}=\frac{\left(\sqrt{x}-2\right)\left(2\sqrt{x}+1\right)}{\sqrt{x}-2}=2\sqrt{x}+1\)
\(Q=\frac{\sqrt{x^3}-\sqrt{x}+2x-2}{\sqrt{x}+2}=\frac{\left(x\sqrt{x}-\sqrt{x}\right)+\left(2x-2\right)}{\sqrt{x}+2}\)
\(=\frac{\sqrt{x}\left(x-1\right)+2\left(x-1\right)}{\sqrt{x}+2}=\frac{\left(x-1\right)\left(\sqrt{x}+2\right)}{\sqrt{x}+2}=x-1\)
Để P = Q thì \(2\sqrt{x}+1=x-1\)( x ≥ 1 ; x ≠ 4 )
<=> \(x-2\sqrt{x}-2=0\)
<=> \(\left(\sqrt{x}-1\right)^2-3=0\)
<=> \(\left(\sqrt{x}-1-\sqrt{3}\right)\left(\sqrt{x}-1+\sqrt{3}\right)=0\)
<=> \(\orbr{\begin{cases}x=1+\sqrt{3}\\x=1-\sqrt{3}\end{cases}}\Rightarrow\orbr{\begin{cases}x=4+2\sqrt{3}\left(tm\right)\\x=4-2\sqrt{3}\left(ktm\right)\end{cases}}\)
Vậy với \(x=4+2\sqrt{3}\)thì P = Q
Bạn nào làm được bài này thì giúp mình với ạ ! mình đang cần gấp
Bài 4:
\(AH=\sqrt{9\cdot16}=12\left(cm\right)\)
\(AB=\sqrt{9\cdot25}=15\left(cm\right)\)
AC=căn(25^2-15^2)=20(cm)
Xét ΔABC vuông tại A có sin ABC=AC/BC=4/5
nên góc ABC=53 độ
1) Khi x = 36 thì A = \(\frac{\sqrt{36}+4}{\sqrt{36}+2}\Leftrightarrow\frac{5}{4}\)
Vậy khi x = 36 thì A = \(\frac{5}{4}\)
2) B = \((\frac{\sqrt{x}\left(\sqrt{x}-4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}+\frac{4\left(\sqrt{x}+4\right)}{\left(\sqrt{x}-4\right)\left(\sqrt{x}+4\right)}):\frac{x+16}{\sqrt{x}+2}\)
= \(\frac{x-4\sqrt{x}+4\sqrt{x}+16}{x-16}.\frac{\sqrt{x}+2}{x+16}=\frac{x+16}{x-16}.\frac{\sqrt{x}+2}{x+16}\)
= \(\frac{\sqrt{x}+2}{x-16}\)
Vậy B = \(\frac{\sqrt{x}+2}{x-16}\)
a: \(M=\dfrac{2\sqrt{x}-21-x+25+2x-8\sqrt{x}+\sqrt{x}-4}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-4\right)}\)
\(=\dfrac{x-5\sqrt{x}}{\left(\sqrt{x}-5\right)\left(\sqrt{x}-4\right)}=\dfrac{\sqrt{x}}{\sqrt{x}-4}\)
Khi x=3-2 căn 2 thì \(M=\dfrac{\sqrt{2}-1}{\sqrt{2}-1-4}=\dfrac{\sqrt{2}-1}{\sqrt{2}-5}=\dfrac{3-4\sqrt{2}}{23}\)
b: Để M là số nguyên thì \(\sqrt{x}-4+4⋮\sqrt{x}-4\)
=>\(\sqrt{x}-4\in\left\{1;-1;2;-2;4;-4\right\}\)
hay \(x\in\left\{9;36;4;64;0\right\}\)
a: \(M=7\sqrt{3}+7\sqrt{2}-7\sqrt{3}-6\sqrt{2}=\sqrt{2}\)
\(N=\dfrac{x+3\sqrt{x}+2+2x-4\sqrt{x}-5\sqrt{x}-2}{\left(x-4\right)}=\dfrac{3x-6\sqrt{x}}{x-4}=\dfrac{3\sqrt{x}}{\sqrt{x}+2}\)
b: Để N=M2 thì \(3\sqrt{x}=2\sqrt{x}+4\)
hay x=16
\(P=\left(\frac{\sqrt{x}\left(\sqrt{x}+1\right)}{\left(\sqrt{x}+1\right)\left(x+1\right)}+\frac{1}{x+1}\right).\frac{x+1}{\sqrt{x}-1}\)ĐK x>=0 x khác -1
=\(\frac{\sqrt{x}+1}{x+1}.\frac{x+1}{\sqrt{x}-1}=\frac{\sqrt{x}+1}{\sqrt{x}-1}\)
b/ x =\(\frac{2+\sqrt{3}}{2}=\frac{4+2\sqrt{3}}{4}=\frac{3+2\sqrt{3}+1}{4}=\frac{\left(\sqrt{3}+1\right)^2}{4}\)
\(\Rightarrow\sqrt{x}=\frac{\sqrt{3}+1}{2}\)
Em thay vào tính nhé!
c) với x>1
A=\(\frac{\sqrt{x}+1}{\sqrt{x}-1}.\sqrt{x}=\frac{x+\sqrt{x}}{\sqrt{x}-1}=\sqrt{x}+2+\frac{2}{\sqrt{x}-1}=\sqrt{x}-1+\frac{2}{\sqrt{x}-1}+3\)
Áp dụng bất đẳng thức Cosi
A\(\ge2\sqrt{2}+3\)
Xét dấu bằng xảy ra ....
1) \(M=\dfrac{10}{\sqrt{x}+2};M_{\left(16\right)}=\dfrac{10}{\sqrt{16}+2}=\dfrac{10}{6}=\dfrac{5}{3}\)
2)\(N=\dfrac{2\sqrt{x}}{\sqrt{x}-2}+\dfrac{\sqrt{x}-18}{x-4}=2+\dfrac{4}{\sqrt{x}-2}+\dfrac{\sqrt{x}-18}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}=2+\dfrac{4\sqrt{x}+8+\sqrt{x}-18}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\)\(N=2+\dfrac{5}{\sqrt{x}+2}=\dfrac{2\sqrt{x}+9}{\sqrt{x}+2}\)
N khác 0 mọi x thuộc đk
\(\dfrac{M}{N}=M.\dfrac{1}{N}=\dfrac{10}{\sqrt{x}+2}.\dfrac{\sqrt{x}+2}{\left(2\sqrt{x}+9\right)}=\dfrac{10}{2\sqrt{x}+9}\)
\(\dfrac{M}{N}=\dfrac{12-\sqrt{x}}{13}=\dfrac{10}{2\sqrt{x}+9}\)
\(\Leftrightarrow\left(12-\sqrt{x}\right)\left(2\sqrt{x}+9\right)=130\)
\(15\sqrt{x}+12.9-2x=130\)
\(2x-15\sqrt{x}+22=0\)
\(\Delta_{\sqrt{x}}=15^2-4.2.22=137\)
\(\sqrt{x}=\dfrac{15+-\sqrt{137}}{4}\)
\(\left[{}\begin{matrix}x_1=\dfrac{181-15.\sqrt{137}}{8}\\x_2=\dfrac{181+15.\sqrt{137}}{8}\end{matrix}\right.\) tự kiểm tra số liểu (nhẩm tính có thể nhầm; thấy lẻ quá)